Stabilizers of concrete group actions
Content created by Egbert Rijke, Fredrik Bakke, Jonathan Prieto-Cubides, Julian KG, fernabnor and louismntnu.
Created on 2022-07-09.
Last modified on 2023-11-24.
module group-theory.stabilizer-groups-concrete-group-actions where
Imports
open import foundation.0-connected-types open import foundation.dependent-pair-types open import foundation.function-types open import foundation.mere-equality open import foundation.propositional-truncations open import foundation.sets open import foundation.subtypes open import foundation.type-arithmetic-dependent-pair-types open import foundation.universe-levels open import group-theory.concrete-group-actions open import group-theory.concrete-groups open import group-theory.subgroups-concrete-groups open import group-theory.transitive-concrete-group-actions
Idea
The stabilizer of an element x : X point
of a
concrete G
-set X : BG → Set
is the
connected component at the element
(point , x)
in the type of
orbits of X
. This type is a
indeed concrete group of which the underlying
type is the type of elements g : G
such that g x = x
.
Definition
module _ {l1 l2 : Level} (G : Concrete-Group l1) (X : action-Concrete-Group l2 G) where action-stabilizer-action-Concrete-Group : type-action-Concrete-Group G X → action-Concrete-Group (l1 ⊔ l2) G action-stabilizer-action-Concrete-Group x u = set-subset ( X u) ( λ y → mere-eq-Prop (shape-Concrete-Group G , x) (u , y)) is-transitive-action-stabilizer-action-Concrete-Group : (x : type-action-Concrete-Group G X) → is-transitive-action-Concrete-Group G ( action-stabilizer-action-Concrete-Group x) is-transitive-action-stabilizer-action-Concrete-Group x = is-0-connected-equiv' ( associative-Σ ( classifying-type-Concrete-Group G) ( type-Set ∘ X) ( mere-eq (shape-Concrete-Group G , x))) ( is-0-connected-mere-eq ( ( shape-Concrete-Group G , x) , ( refl-mere-eq (shape-Concrete-Group G , x))) ( λ (uy , p) → apply-universal-property-trunc-Prop p ( mere-eq-Prop ( ( shape-Concrete-Group G , x) , ( refl-mere-eq (shape-Concrete-Group G , x))) ( uy , p)) ( λ q → unit-trunc-Prop ( eq-type-subtype ( mere-eq-Prop (shape-Concrete-Group G , x)) ( q))))) subgroup-stabilizer-action-Concrete-Group : (x : type-action-Concrete-Group G X) → subgroup-Concrete-Group (l1 ⊔ l2) G pr1 (pr1 (subgroup-stabilizer-action-Concrete-Group x)) = action-stabilizer-action-Concrete-Group x pr2 (pr1 (subgroup-stabilizer-action-Concrete-Group x)) = is-transitive-action-stabilizer-action-Concrete-Group x pr1 (pr2 (subgroup-stabilizer-action-Concrete-Group x)) = x pr2 (pr2 (subgroup-stabilizer-action-Concrete-Group x)) = refl-mere-eq (shape-Concrete-Group G , x)
External links
- stabilizer group at Lab
- Fixed points and stabilizer subgroups at Wikipedia
- Isotropy Group at Wolfram Mathworld
- Isotropy group at Encyclopedia of Mathematics
Recent changes
- 2023-11-24. Fredrik Bakke. The orbit category of a group (#935).
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-06-25. Fredrik Bakke, louismntnu, fernabnor, Egbert Rijke and Julian KG. Posets are categories, and refactor binary relations (#665).
- 2023-06-10. Egbert Rijke. cleaning up transport and dependent identifications files (#650).
- 2023-05-03. Fredrik Bakke. Define the smash product of pointed types and refactor pointed types (#583).