Multiples of elements in large abelian groups
Content created by Louis Wasserman.
Created on 2025-10-17.
Last modified on 2025-10-17.
module group-theory.multiples-of-elements-large-abelian-groups where
Imports
open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.multiplication-natural-numbers open import elementary-number-theory.natural-numbers open import foundation.identity-types open import foundation.transport-along-identifications open import foundation.universe-levels open import group-theory.large-abelian-groups open import group-theory.powers-of-elements-large-groups
Idea
The
multiplication¶
operation on a large abelian group is
the map n x ↦ n · x
, which is defined by
iteratively adding x
with itself n
times. This file describes this operation where n
ranges over the
natural numbers.
Definition
module _ {α : Level → Level} {β : Level → Level → Level} (G : Large-Ab α β) where multiple-Large-Ab : {l : Level} → ℕ → type-Large-Ab G l → type-Large-Ab G l multiple-Large-Ab = power-Large-Group (large-group-Large-Ab G)
Properties
n · 0 = 0
module _ {α : Level → Level} {β : Level → Level → Level} (G : Large-Ab α β) where abstract raise-multiple-zero-Large-Ab : (l : Level) (n : ℕ) → multiple-Large-Ab G n (raise-zero-Large-Ab G l) = raise-zero-Large-Ab G l raise-multiple-zero-Large-Ab = raise-power-unit-Large-Group (large-group-Large-Ab G)
(n + 1) ∙ x = n ∙ x + x
module _ {α : Level → Level} {β : Level → Level → Level} (G : Large-Ab α β) where abstract multiple-succ-Large-Ab : {l : Level} (n : ℕ) (x : type-Large-Ab G l) → multiple-Large-Ab G (succ-ℕ n) x = add-Large-Ab G (multiple-Large-Ab G n x) x multiple-succ-Large-Ab = power-succ-Large-Group (large-group-Large-Ab G)
(n + 1) ∙ x = x + n ∙ x
module _ {α : Level → Level} {β : Level → Level → Level} (G : Large-Ab α β) where abstract multiple-succ-Large-Ab' : {l : Level} (n : ℕ) (x : type-Large-Ab G l) → multiple-Large-Ab G (succ-ℕ n) x = add-Large-Ab G x (multiple-Large-Ab G n x) multiple-succ-Large-Ab' = power-succ-Large-Group' (large-group-Large-Ab G)
Multiples by sums of natural numbers are sums of multiples
module _ {α : Level → Level} {β : Level → Level → Level} (G : Large-Ab α β) where abstract right-distributive-multiple-add-Large-Ab : {l : Level} (m n : ℕ) {x : type-Large-Ab G l} → multiple-Large-Ab G (m +ℕ n) x = add-Large-Ab G (multiple-Large-Ab G m x) (multiple-Large-Ab G n x) right-distributive-multiple-add-Large-Ab = distributive-power-add-Large-Group (large-group-Large-Ab G)
Multiples distribute over the sum of elements
module _ {α : Level → Level} {β : Level → Level → Level} (G : Large-Ab α β) where abstract left-distributive-multiple-add-Large-Ab : {l1 l2 : Level} (n : ℕ) → {x : type-Large-Ab G l1} {y : type-Large-Ab G l2} → multiple-Large-Ab G n (add-Large-Ab G x y) = add-Large-Ab G (multiple-Large-Ab G n x) (multiple-Large-Ab G n y) left-distributive-multiple-add-Large-Ab n {x} {y} = distributive-power-mul-Large-Group ( large-group-Large-Ab G) ( n) ( commutative-add-Large-Ab G x y)
Multiplication by products of natural numbers is iterated multiplication
module _ {α : Level → Level} {β : Level → Level → Level} (G : Large-Ab α β) where abstract multiple-mul-Large-Ab : {l : Level} (m n : ℕ) {x : type-Large-Ab G l} → multiple-Large-Ab G (m *ℕ n) x = multiple-Large-Ab G n (multiple-Large-Ab G m x) multiple-mul-Large-Ab = power-mul-Large-Group (large-group-Large-Ab G)
See also
Recent changes
- 2025-10-17. Louis Wasserman. Large abelian groups and commutative monoids (#1602).