Unital algebras over commutative rings

Content created by Louis Wasserman.

Created on 2026-02-15.
Last modified on 2026-02-15.

module commutative-algebra.unital-algebras-commutative-rings where
Imports
open import commutative-algebra.algebras-commutative-rings
open import commutative-algebra.commutative-rings

open import foundation.dependent-pair-types
open import foundation.identity-types
open import foundation.propositions
open import foundation.sets
open import foundation.subtypes
open import foundation.unital-binary-operations
open import foundation.universe-levels

open import group-theory.abelian-groups

Idea

An algebra over a commutative ring is unital if its multiplication operation is unital.

Definition

module _
  {l1 l2 : Level}
  (R : Commutative-Ring l1)
  (A : algebra-Commutative-Ring l2 R)
  where

  is-unital-prop-algebra-Commutative-Ring : Prop l2
  is-unital-prop-algebra-Commutative-Ring =
    is-unital-prop-Set
      ( set-algebra-Commutative-Ring R A)
      ( mul-algebra-Commutative-Ring R A)

  is-unital-algebra-Commutative-Ring : UU l2
  is-unital-algebra-Commutative-Ring =
    type-Prop is-unital-prop-algebra-Commutative-Ring

unital-algebra-Commutative-Ring :
  {l1 : Level} (l2 : Level)  Commutative-Ring l1  UU (l1  lsuc l2)
unital-algebra-Commutative-Ring l2 R =
  type-subtype (is-unital-prop-algebra-Commutative-Ring {l2 = l2} R)

Properties

module _
  {l1 l2 : Level}
  (R : Commutative-Ring l1)
  (A : unital-algebra-Commutative-Ring l2 R)
  where

  algebra-unital-algebra-Commutative-Ring : algebra-Commutative-Ring l2 R
  algebra-unital-algebra-Commutative-Ring = pr1 A

  set-unital-algebra-Commutative-Ring : Set l2
  set-unital-algebra-Commutative-Ring =
    set-algebra-Commutative-Ring R algebra-unital-algebra-Commutative-Ring

  type-unital-algebra-Commutative-Ring : UU l2
  type-unital-algebra-Commutative-Ring =
    type-Set set-unital-algebra-Commutative-Ring

  ab-add-unital-algebra-Commutative-Ring : Ab l2
  ab-add-unital-algebra-Commutative-Ring =
    ab-add-algebra-Commutative-Ring R algebra-unital-algebra-Commutative-Ring

  add-unital-algebra-Commutative-Ring :
    type-unital-algebra-Commutative-Ring 
    type-unital-algebra-Commutative-Ring 
    type-unital-algebra-Commutative-Ring
  add-unital-algebra-Commutative-Ring =
    add-Ab ab-add-unital-algebra-Commutative-Ring

  zero-unital-algebra-Commutative-Ring : type-unital-algebra-Commutative-Ring
  zero-unital-algebra-Commutative-Ring =
    zero-Ab ab-add-unital-algebra-Commutative-Ring

  neg-unital-algebra-Commutative-Ring :
    type-unital-algebra-Commutative-Ring  type-unital-algebra-Commutative-Ring
  neg-unital-algebra-Commutative-Ring =
    neg-Ab ab-add-unital-algebra-Commutative-Ring

  scalar-mul-unital-algebra-Commutative-Ring :
    type-Commutative-Ring R 
    type-unital-algebra-Commutative-Ring 
    type-unital-algebra-Commutative-Ring
  scalar-mul-unital-algebra-Commutative-Ring =
    scalar-mul-algebra-Commutative-Ring
      ( R)
      ( algebra-unital-algebra-Commutative-Ring)

  mul-unital-algebra-Commutative-Ring :
    type-unital-algebra-Commutative-Ring 
    type-unital-algebra-Commutative-Ring 
    type-unital-algebra-Commutative-Ring
  mul-unital-algebra-Commutative-Ring =
    mul-algebra-Commutative-Ring R algebra-unital-algebra-Commutative-Ring

  is-unital-mul-unital-algebra-Commutative-Ring :
    is-unital mul-unital-algebra-Commutative-Ring
  is-unital-mul-unital-algebra-Commutative-Ring = pr2 A

  one-unital-algebra-Commutative-Ring : type-unital-algebra-Commutative-Ring
  one-unital-algebra-Commutative-Ring =
    pr1 is-unital-mul-unital-algebra-Commutative-Ring

  left-unit-law-mul-unital-algebra-Commutative-Ring :
    (x : type-unital-algebra-Commutative-Ring) 
    mul-unital-algebra-Commutative-Ring one-unital-algebra-Commutative-Ring x 
    x
  left-unit-law-mul-unital-algebra-Commutative-Ring =
    pr1 (pr2 is-unital-mul-unital-algebra-Commutative-Ring)

  right-unit-law-mul-unital-algebra-Commutative-Ring :
    (x : type-unital-algebra-Commutative-Ring) 
    mul-unital-algebra-Commutative-Ring x one-unital-algebra-Commutative-Ring 
    x
  right-unit-law-mul-unital-algebra-Commutative-Ring =
    pr2 (pr2 is-unital-mul-unital-algebra-Commutative-Ring)

Every commutative ring is a unital algebra over itself

unital-algebra-commutative-ring-Commutative-Ring :
  {l : Level} (R : Commutative-Ring l)  unital-algebra-Commutative-Ring l R
unital-algebra-commutative-ring-Commutative-Ring R =
  ( algebra-commutative-ring-Commutative-Ring R ,
    is-unital-Commutative-Ring R)

Recent changes