Unital algebras over commutative rings
Content created by Louis Wasserman.
Created on 2026-02-15.
Last modified on 2026-02-15.
module commutative-algebra.unital-algebras-commutative-rings where
Imports
open import commutative-algebra.algebras-commutative-rings open import commutative-algebra.commutative-rings open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.propositions open import foundation.sets open import foundation.subtypes open import foundation.unital-binary-operations open import foundation.universe-levels open import group-theory.abelian-groups
Idea
An algebra over a commutative ring is unital¶ if its multiplication operation is unital.
Definition
module _ {l1 l2 : Level} (R : Commutative-Ring l1) (A : algebra-Commutative-Ring l2 R) where is-unital-prop-algebra-Commutative-Ring : Prop l2 is-unital-prop-algebra-Commutative-Ring = is-unital-prop-Set ( set-algebra-Commutative-Ring R A) ( mul-algebra-Commutative-Ring R A) is-unital-algebra-Commutative-Ring : UU l2 is-unital-algebra-Commutative-Ring = type-Prop is-unital-prop-algebra-Commutative-Ring unital-algebra-Commutative-Ring : {l1 : Level} (l2 : Level) → Commutative-Ring l1 → UU (l1 ⊔ lsuc l2) unital-algebra-Commutative-Ring l2 R = type-subtype (is-unital-prop-algebra-Commutative-Ring {l2 = l2} R)
Properties
module _ {l1 l2 : Level} (R : Commutative-Ring l1) (A : unital-algebra-Commutative-Ring l2 R) where algebra-unital-algebra-Commutative-Ring : algebra-Commutative-Ring l2 R algebra-unital-algebra-Commutative-Ring = pr1 A set-unital-algebra-Commutative-Ring : Set l2 set-unital-algebra-Commutative-Ring = set-algebra-Commutative-Ring R algebra-unital-algebra-Commutative-Ring type-unital-algebra-Commutative-Ring : UU l2 type-unital-algebra-Commutative-Ring = type-Set set-unital-algebra-Commutative-Ring ab-add-unital-algebra-Commutative-Ring : Ab l2 ab-add-unital-algebra-Commutative-Ring = ab-add-algebra-Commutative-Ring R algebra-unital-algebra-Commutative-Ring add-unital-algebra-Commutative-Ring : type-unital-algebra-Commutative-Ring → type-unital-algebra-Commutative-Ring → type-unital-algebra-Commutative-Ring add-unital-algebra-Commutative-Ring = add-Ab ab-add-unital-algebra-Commutative-Ring zero-unital-algebra-Commutative-Ring : type-unital-algebra-Commutative-Ring zero-unital-algebra-Commutative-Ring = zero-Ab ab-add-unital-algebra-Commutative-Ring neg-unital-algebra-Commutative-Ring : type-unital-algebra-Commutative-Ring → type-unital-algebra-Commutative-Ring neg-unital-algebra-Commutative-Ring = neg-Ab ab-add-unital-algebra-Commutative-Ring scalar-mul-unital-algebra-Commutative-Ring : type-Commutative-Ring R → type-unital-algebra-Commutative-Ring → type-unital-algebra-Commutative-Ring scalar-mul-unital-algebra-Commutative-Ring = scalar-mul-algebra-Commutative-Ring ( R) ( algebra-unital-algebra-Commutative-Ring) mul-unital-algebra-Commutative-Ring : type-unital-algebra-Commutative-Ring → type-unital-algebra-Commutative-Ring → type-unital-algebra-Commutative-Ring mul-unital-algebra-Commutative-Ring = mul-algebra-Commutative-Ring R algebra-unital-algebra-Commutative-Ring is-unital-mul-unital-algebra-Commutative-Ring : is-unital mul-unital-algebra-Commutative-Ring is-unital-mul-unital-algebra-Commutative-Ring = pr2 A one-unital-algebra-Commutative-Ring : type-unital-algebra-Commutative-Ring one-unital-algebra-Commutative-Ring = pr1 is-unital-mul-unital-algebra-Commutative-Ring left-unit-law-mul-unital-algebra-Commutative-Ring : (x : type-unital-algebra-Commutative-Ring) → mul-unital-algebra-Commutative-Ring one-unital-algebra-Commutative-Ring x = x left-unit-law-mul-unital-algebra-Commutative-Ring = pr1 (pr2 is-unital-mul-unital-algebra-Commutative-Ring) right-unit-law-mul-unital-algebra-Commutative-Ring : (x : type-unital-algebra-Commutative-Ring) → mul-unital-algebra-Commutative-Ring x one-unital-algebra-Commutative-Ring = x right-unit-law-mul-unital-algebra-Commutative-Ring = pr2 (pr2 is-unital-mul-unital-algebra-Commutative-Ring)
Every commutative ring is a unital algebra over itself
unital-algebra-commutative-ring-Commutative-Ring : {l : Level} (R : Commutative-Ring l) → unital-algebra-Commutative-Ring l R unital-algebra-commutative-ring-Commutative-Ring R = ( algebra-commutative-ring-Commutative-Ring R , is-unital-Commutative-Ring R)
External links
- Unital algebra at Wikidata
Recent changes
- 2026-02-15. Louis Wasserman. Unital and associative algebras over a commutative ring (#1843).