Increasing sequences in the real numbers
Content created by Louis Wasserman.
Created on 2025-12-30.
Last modified on 2025-12-30.
module real-numbers.increasing-sequences-real-numbers where
Imports
open import elementary-number-theory.natural-numbers open import foundation.propositions open import foundation.universe-levels open import lists.sequences open import order-theory.increasing-sequences-posets open import order-theory.posets open import real-numbers.dedekind-real-numbers open import real-numbers.inequality-real-numbers
Idea
A sequence of real numbers is increasing¶ if it is increasing in the poset of real numbers.
Definition
module _ {l : Level} (u : sequence (ℝ l)) where is-increasing-prop-sequence-ℝ : Prop l is-increasing-prop-sequence-ℝ = is-increasing-prop-sequence-Poset (ℝ-Poset l) u is-increasing-sequence-ℝ : UU l is-increasing-sequence-ℝ = type-Prop is-increasing-prop-sequence-ℝ
Properties
aₙ is increasing if and only if for all n, aₙ ≤ aₙ₊₁
module _ {l : Level} (u : sequence (ℝ l)) where abstract is-increasing-leq-succ-sequence-ℝ : ((n : ℕ) → leq-ℝ (u n) (u (succ-ℕ n))) → is-increasing-sequence-ℝ u is-increasing-leq-succ-sequence-ℝ = is-increasing-leq-succ-sequence-Poset (ℝ-Poset l) u leq-succ-is-increasing-sequence-ℝ : is-increasing-sequence-ℝ u → (n : ℕ) → leq-ℝ (u n) (u (succ-ℕ n)) leq-succ-is-increasing-sequence-ℝ = leq-succ-is-increasing-sequence-Poset (ℝ-Poset l) u
Recent changes
- 2025-12-30. Louis Wasserman. Properties of limits of sequences in the real numbers (#1767).