The standard Euclidean inner product spaces
Content created by Louis Wasserman.
Created on 2026-01-09.
Last modified on 2026-01-09.
{-# OPTIONS --lossy-unification #-} module linear-algebra.standard-euclidean-inner-product-spaces where
Imports
open import elementary-number-theory.multiplication-positive-rational-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.positive-rational-numbers open import foundation.action-on-identifications-functions open import foundation.binary-relations open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.existential-quantification open import foundation.function-types open import foundation.identity-types open import foundation.propositional-truncations open import foundation.universe-levels open import linear-algebra.dot-product-standard-euclidean-vector-spaces open import linear-algebra.normed-real-vector-spaces open import linear-algebra.real-inner-product-spaces open import linear-algebra.real-inner-product-spaces-are-normed open import linear-algebra.standard-euclidean-vector-spaces open import metric-spaces.lipschitz-maps-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.metrics open import metric-spaces.rational-neighborhood-relations open import metric-spaces.short-maps-metric-spaces open import metric-spaces.uniform-homeomorphisms-metric-spaces open import metric-spaces.uniformly-continuous-maps-metric-spaces open import order-theory.large-posets open import real-numbers.addition-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.distance-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.metric-space-of-functions-into-real-numbers open import real-numbers.multiplication-nonnegative-real-numbers open import real-numbers.multiplication-real-numbers open import real-numbers.nonnegative-real-numbers open import real-numbers.positive-and-negative-real-numbers open import real-numbers.positive-real-numbers open import real-numbers.rational-real-numbers open import real-numbers.square-roots-nonnegative-real-numbers open import real-numbers.squares-real-numbers open import real-numbers.strict-inequality-real-numbers open import real-numbers.zero-real-numbers open import univalent-combinatorics.standard-finite-types
Idea
The standard Euclidean inner product space is the standard Euclidean vector space, with inner product the dot product.
Definition
inner-product-space-ℝ-Fin : ℕ → (l : Level) → ℝ-Inner-Product-Space l (lsuc l) inner-product-space-ℝ-Fin n l = ( vector-space-ℝ-Fin n l , bilinear-form-dot-product-ℝ-Fin n l , symmetric-dot-product-ℝ-Fin , is-nonnegative-diagonal-dot-product-ℝ-Fin , extensionality-dot-product-ℝ-Fin) normed-vector-space-ℝ-Fin : ℕ → (l : Level) → Normed-ℝ-Vector-Space l (lsuc l) normed-vector-space-ℝ-Fin n l = normed-vector-space-ℝ-Inner-Product-Space ( inner-product-space-ℝ-Fin n l) squared-euclidean-norm-ℝ-Fin : {n : ℕ} {l : Level} → type-ℝ-Fin n l → ℝ l squared-euclidean-norm-ℝ-Fin {n} {l} = squared-norm-ℝ-Inner-Product-Space (inner-product-space-ℝ-Fin n l) euclidean-norm-ℝ-Fin : {n : ℕ} {l : Level} → type-ℝ-Fin n l → ℝ l euclidean-norm-ℝ-Fin {n} {l} = norm-ℝ-Inner-Product-Space (inner-product-space-ℝ-Fin n l) nonnegative-euclidean-norm-ℝ-Fin : {n : ℕ} {l : Level} → type-ℝ-Fin n l → ℝ⁰⁺ l nonnegative-euclidean-norm-ℝ-Fin {n} {l} = nonnegative-norm-Normed-ℝ-Vector-Space ( normed-vector-space-ℝ-Fin n l) euclidean-dist-ℝ-Fin : {n : ℕ} {l : Level} → type-ℝ-Fin n l → type-ℝ-Fin n l → ℝ l euclidean-dist-ℝ-Fin {n} u v = euclidean-norm-ℝ-Fin (diff-ℝ-Fin u v) nonnegative-euclidean-dist-ℝ-Fin : {n : ℕ} {l : Level} → type-ℝ-Fin n l → type-ℝ-Fin n l → ℝ⁰⁺ l nonnegative-euclidean-dist-ℝ-Fin u v = nonnegative-euclidean-norm-ℝ-Fin (diff-ℝ-Fin u v) abstract triangular-euclidean-norm-ℝ-Fin : (n : ℕ) {l : Level} (u v : type-ℝ-Fin n l) → leq-ℝ ( euclidean-norm-ℝ-Fin (add-ℝ-Fin u v)) ( euclidean-norm-ℝ-Fin u +ℝ euclidean-norm-ℝ-Fin v) triangular-euclidean-norm-ℝ-Fin n {l} = triangular-norm-Normed-ℝ-Vector-Space ( normed-vector-space-ℝ-Fin n l) triangular-euclidean-dist-ℝ-Fin : (n : ℕ) {l : Level} (u v w : type-ℝ-Fin n l) → leq-ℝ ( euclidean-dist-ℝ-Fin u w) ( ( euclidean-dist-ℝ-Fin u v) +ℝ ( euclidean-dist-ℝ-Fin v w)) triangular-euclidean-dist-ℝ-Fin n {l} = triangular-dist-Normed-ℝ-Vector-Space ( normed-vector-space-ℝ-Fin n l) is-extensional-euclidean-norm-ℝ-Fin : (n : ℕ) {l : Level} (v : type-ℝ-Fin n l) → is-zero-ℝ (euclidean-norm-ℝ-Fin v) → v = zero-ℝ-Fin n l is-extensional-euclidean-norm-ℝ-Fin n {l} = is-extensional-norm-Normed-ℝ-Vector-Space ( normed-vector-space-ℝ-Fin n l) is-metric-euclidean-dist-ℝ-Fin : (n : ℕ) (l : Level) → is-metric-distance-function ( set-ℝ-Fin n l) ( nonnegative-euclidean-dist-ℝ-Fin) is-metric-euclidean-dist-ℝ-Fin n l = is-metric-dist-Normed-ℝ-Vector-Space ( normed-vector-space-ℝ-Fin n l) euclidean-metric-space-ℝ-Fin : ℕ → (l : Level) → Metric-Space (lsuc l) l euclidean-metric-space-ℝ-Fin n l = metric-space-ℝ-Inner-Product-Space (inner-product-space-ℝ-Fin n l) euclidean-neighborhood-prop-ℝ-Fin : (n : ℕ) (l : Level) → Rational-Neighborhood-Relation l (type-ℝ-Fin n l) euclidean-neighborhood-prop-ℝ-Fin n l = neighborhood-prop-Metric-Space (euclidean-metric-space-ℝ-Fin n l) euclidean-neighborhood-ℝ-Fin : (n : ℕ) (l : Level) → ℚ⁺ → Relation l (type-ℝ-Fin n l) euclidean-neighborhood-ℝ-Fin n l = neighborhood-Metric-Space (euclidean-metric-space-ℝ-Fin n l)
Properties
The identity is a short map from the Euclidean metric space over ℝⁿ to the product metric space over ℝⁿ
abstract is-short-map-id-euclidean-product-metric-space-ℝ-Fin : (n : ℕ) (l : Level) → is-short-map-Metric-Space ( euclidean-metric-space-ℝ-Fin n l) ( function-into-ℝ-Metric-Space (Fin n) l) ( id) is-short-map-id-euclidean-product-metric-space-ℝ-Fin n l ε u v ∥u-v∥≤ε i = neighborhood-dist-ℝ ( ε) ( u i) ( v i) ( transitive-leq-ℝ ( dist-ℝ (u i) (v i)) ( euclidean-norm-ℝ-Fin (diff-ℝ-Fin u v)) ( real-ℚ⁺ ε) ( ∥u-v∥≤ε) ( leq-abs-sqrt-diagonal-dot-product-ℝ-Fin ( diff-ℝ-Fin u v) ( i))) is-uniformly-continuous-map-id-euclidean-product-metric-space-ℝ-Fin : (n : ℕ) (l : Level) → is-uniformly-continuous-map-Metric-Space ( euclidean-metric-space-ℝ-Fin n l) ( function-into-ℝ-Metric-Space (Fin n) l) ( id) is-uniformly-continuous-map-id-euclidean-product-metric-space-ℝ-Fin n l = is-uniformly-continuous-map-is-short-map-Metric-Space ( euclidean-metric-space-ℝ-Fin n l) ( function-into-ℝ-Metric-Space (Fin n) l) ( id) ( is-short-map-id-euclidean-product-metric-space-ℝ-Fin n l)
The identity is a Lipschitz map from the product metric space ℝⁿ to the Euclidean metric space over ℝⁿ
abstract is-lipschitz-constant-map-id-product-euclidean-metric-space-ℝ-Fin : (n : ℕ) (l : Level) (α : ℚ⁺) → leq-ℝ (real-sqrt-ℝ⁰⁺ (nonnegative-real-ℕ n)) (real-ℚ⁺ α) → is-lipschitz-constant-map-Metric-Space ( function-into-ℝ-Metric-Space (Fin n) l) ( euclidean-metric-space-ℝ-Fin n l) ( id) ( α) is-lipschitz-constant-map-id-product-euclidean-metric-space-ℝ-Fin n l α √n≤α ε u v Nεuv = let open inequality-reasoning-Large-Poset ℝ-Large-Poset in chain-of-inequalities euclidean-norm-ℝ-Fin (diff-ℝ-Fin u v) ≤ real-sqrt-ℝ⁰⁺ ( nonnegative-real-ℕ n *ℝ⁰⁺ nonnegative-square-ℝ (real-ℚ⁺ ε)) by preserves-leq-sqrt-ℝ⁰⁺ ( nonnegative-diagonal-dot-product-ℝ-Fin ( diff-ℝ-Fin u v)) ( nonnegative-real-ℕ n *ℝ⁰⁺ nonnegative-square-ℝ (real-ℚ⁺ ε)) ( leq-mul-dimension-bound-dot-product-ℝ-Fin ( n) ( diff-ℝ-Fin u v) ( nonnegative-real-ℚ⁺ ε) ( λ i → leq-dist-neighborhood-ℝ ( ε) ( u i) ( v i) ( Nεuv i))) ≤ ( real-sqrt-ℝ⁰⁺ (nonnegative-real-ℕ n)) *ℝ ( real-sqrt-ℝ⁰⁺ (nonnegative-square-ℝ (real-ℚ⁺ ε))) by leq-eq-ℝ (ap real-ℝ⁰⁺ (distributive-sqrt-mul-ℝ⁰⁺ _ _)) ≤ real-ℚ⁺ α *ℝ real-ℚ⁺ ε by preserves-leq-mul-ℝ⁰⁺ ( sqrt-ℝ⁰⁺ (nonnegative-real-ℕ n)) ( nonnegative-real-ℚ⁺ α) ( sqrt-ℝ⁰⁺ (nonnegative-square-ℝ (real-ℚ⁺ ε))) ( nonnegative-real-ℚ⁺ ε) ( √n≤α) ( leq-eq-ℝ ( ap real-ℝ⁰⁺ (is-retraction-square-ℝ⁰⁺ (nonnegative-real-ℚ⁺ ε)))) ≤ real-ℚ⁺ (α *ℚ⁺ ε) by leq-eq-ℝ (mul-real-ℚ _ _) is-lipschitz-map-id-product-euclidean-metric-space-ℝ-Fin : (n : ℕ) (l : Level) → is-lipschitz-map-Metric-Space ( function-into-ℝ-Metric-Space (Fin n) l) ( euclidean-metric-space-ℝ-Fin n l) ( id) is-lipschitz-map-id-product-euclidean-metric-space-ℝ-Fin n l = let open do-syntax-trunc-Prop ( is-lipschitz-prop-map-Metric-Space ( function-into-ℝ-Metric-Space (Fin n) l) ( euclidean-metric-space-ℝ-Fin n l) ( id)) in do (α , √n<α) ← le-some-rational-ℝ (real-sqrt-ℝ⁰⁺ (nonnegative-real-ℕ n)) let α⁺ = ( α , reflects-is-positive-real-ℚ ( is-positive-le-ℝ⁰⁺ ( sqrt-ℝ⁰⁺ (nonnegative-real-ℕ n)) ( real-ℚ α) ( √n<α))) intro-exists ( α⁺) ( is-lipschitz-constant-map-id-product-euclidean-metric-space-ℝ-Fin ( n) ( l) ( α⁺) ( leq-le-ℝ √n<α)) is-uniformly-continuous-map-id-product-euclidean-metric-space-ℝ-Fin : (n : ℕ) (l : Level) → is-uniformly-continuous-map-Metric-Space ( function-into-ℝ-Metric-Space (Fin n) l) ( euclidean-metric-space-ℝ-Fin n l) ( id) is-uniformly-continuous-map-id-product-euclidean-metric-space-ℝ-Fin n l = is-uniformly-continuous-map-is-lipschitz-map-Metric-Space ( function-into-ℝ-Metric-Space (Fin n) l) ( euclidean-metric-space-ℝ-Fin n l) ( id) ( is-lipschitz-map-id-product-euclidean-metric-space-ℝ-Fin n l)
The identity is a uniform homeomorphism between the product metric space ℝⁿ and the Euclidean metric space ℝⁿ
uniform-homeo-id-product-euclidean-metric-space-ℝ-Fin : (n : ℕ) (l : Level) → uniform-homeo-Metric-Space ( function-into-ℝ-Metric-Space (Fin n) l) ( euclidean-metric-space-ℝ-Fin n l) uniform-homeo-id-product-euclidean-metric-space-ℝ-Fin n l = ( id , is-equiv-id , is-uniformly-continuous-map-id-product-euclidean-metric-space-ℝ-Fin ( n) ( l) , is-uniformly-continuous-map-id-euclidean-product-metric-space-ℝ-Fin ( n) ( l))
Recent changes
- 2026-01-09. Louis Wasserman. The standard Euclidean spaces ℝⁿ (#1756).