Whiskering operations
Content created by Fredrik Bakke and Egbert Rijke.
Created on 2024-02-06.
Last modified on 2024-10-15.
module foundation.whiskering-operations where
Imports
open import foundation.universe-levels
Idea
Consider a type A
with a binary relation
R : A → A → 𝒰
, which comes equipped with a multiplicative operation
μ : (x y z : A) → R x y → R y z → R x z.
Furthermore, assume that each R x y
comes equipped with a further binary
relation E : R x y → R x y → 𝒰
. A
left whiskering operation¶ on E
with respect to μ
is an operation
(f : R x y) {g h : R y z} → E g h → E (μ f g) (μ f h).
Similarly, a
right whiskering operation¶ on E
with respect to μ
is an operation
{g h : R x y} → E g h → (f : R y z) → E (μ g f) (μ h f).
The general notion of whiskering is introduced in order to establish a clear naming scheme for all the variations of whiskering that exist in the agda-unimath library:
-
In whiskering identifications with respect to concatenation we define the whiskering operations
left-whisker-concat : (p : x = y) {q r : y = z} → q = r → p ∙ q = p ∙ r
and
right-whisker-concat : {p q : x = y} → p = q → (r : y = z) → p ∙ r = q ∙ r
with respect to concatenation of identifications.
-
In whiskering homotopies with respect to composition we define the whiskering operations
left-whisker-comp : (f : B → C) {g h : A → B} → g ~ h → f ∘ g ~ f ∘ h
and
right-whisker-comp : {f g : B → C} → (f ~ g) → (h : A → B) → f ∘ h ~ g ∘ h
of homotopies with respect to composition of functions.
-
In whiskering homotopies with respect to concatenation we define the whiskering operations
left-whisker-comp-concat : (H : f ~ g) {K L : g ~ h} → K ~ L → H ∙h K ~ H ∙h L
and
right-whisker-comp-concat : {H K : f ~ g} → H ~ K → (L : g ~ h) → H ∙h L ~ K ∙h L
of homotopies with respect to concatenation of homotopies.
-
In whsikering higher homotopies with respect to composition we define the whiskering operations
left-whisker-comp² : (f : B → C) {g h : A → B} {H K : g ~ h} → H ~ K → f ·l H ~ f ·l K
and
right-whisker-comp² : {f g : B → C} {H K : f ~ g} → H ~ K → (h : A → B) → H ·r h ~ K ·r h
of higher homotopies with respect to composition of functions.
Definitions
Left whiskering operations
module _ {l1 l2 l3 : Level} (A : UU l1) (R : A → A → UU l2) where left-whiskering-operation : (μ : {x y z : A} → R x y → R y z → R x z) → ({x y : A} → R x y → R x y → UU l3) → UU (l1 ⊔ l2 ⊔ l3) left-whiskering-operation μ E = {x y z : A} (f : R x y) {g h : R y z} → E g h → E (μ f g) (μ f h) left-whiskering-operation' : (μ : {x y z : A} → R y z → R x y → R x z) → ({x y : A} → R x y → R x y → UU l3) → UU (l1 ⊔ l2 ⊔ l3) left-whiskering-operation' μ E = {x y z : A} (f : R y z) {g h : R x y} → E g h → E (μ f g) (μ f h)
Right whiskering operations
module _ {l1 l2 l3 : Level} (A : UU l1) (R : A → A → UU l2) where right-whiskering-operation : (μ : {x y z : A} → R x y → R y z → R x z) → ({x y : A} → R x y → R x y → UU l3) → UU (l1 ⊔ l2 ⊔ l3) right-whiskering-operation μ E = {x y z : A} {f g : R x y} → E f g → (h : R y z) → E (μ f h) (μ g h) right-whiskering-operation' : (μ : {x y z : A} → R y z → R x y → R x z) → ({x y : A} → R x y → R x y → UU l3) → UU (l1 ⊔ l2 ⊔ l3) right-whiskering-operation' μ E = {x y z : A} {f g : R y z} → E f g → (h : R x y) → E (μ f h) (μ g h)
Double whiskering operations
Double whiskering operations are operations that simultaneously perform whiskering on the left and on the right.
Note that double whiskering should not be confused with iterated whiskering on the left or with iterated whiskering on the right.
module _ {l1 l2 l3 : Level} (A : UU l1) (R : A → A → UU l2) where double-whiskering-operation : (μ : {x y z : A} → R x y → R y z → R x z) → ({x y : A} → R x y → R x y → UU l3) → UU (l1 ⊔ l2 ⊔ l3) double-whiskering-operation μ E = {x' x y y' : A} (h : R x' x) {f g : R x y} (e : E f g) (k : R y y') → E (μ (μ h f) k) (μ (μ h g) k) double-whiskering-operation' : (μ : {x y z : A} → R y z → R x y → R x z) → ({x y : A} → R x y → R x y → UU l3) → UU (l1 ⊔ l2 ⊔ l3) double-whiskering-operation' μ E = {x' x y y' : A} (h : R y y') {f g : R x y} (e : E f g) (k : R x' x) → E (μ (μ h f) k) (μ (μ h g) k)
Recent changes
- 2024-10-15. Fredrik Bakke. Minor search engine optimizations (#1197).
- 2024-02-06. Egbert Rijke and Fredrik Bakke. Refactor files about identity types and homotopies (#1014).