Partial sums of sequences in semirings
Content created by Louis Wasserman, Fredrik Bakke and malarbol.
Created on 2025-08-30.
Last modified on 2025-08-30.
module ring-theory.partial-sums-sequences-semirings where
Imports
open import elementary-number-theory.natural-numbers open import foundation.homotopies open import foundation.identity-types open import foundation.universe-levels open import lists.finite-sequences open import lists.sequences open import ring-theory.semirings open import ring-theory.sums-of-finite-sequences-of-elements-semirings
Ideas
The
sequence of partial sums¶
of a sequence u
in a
semiring is the sequence of sums of terms of u
:
n ↦ Σ (k ≤ n) (u k).
Definitions
Partial sums of terms of a sequence in a semiring
module _ {l : Level} (R : Semiring l) (u : ℕ → type-Semiring R) where seq-sum-sequence-Semiring : ℕ → type-Semiring R seq-sum-sequence-Semiring n = sum-fin-sequence-type-Semiring ( R) ( succ-ℕ n) ( fin-sequence-sequence u (succ-ℕ n))
Properties
Homotopic sequences have homotopic partial sums
module _ {l : Level} (R : Semiring l) {u v : ℕ → type-Semiring R} where htpy-seq-sum-sequence-Semiring : (u ~ v) → seq-sum-sequence-Semiring R u ~ seq-sum-sequence-Semiring R v htpy-seq-sum-sequence-Semiring H n = htpy-sum-fin-sequence-type-Semiring ( R) ( succ-ℕ n) ( htpy-fin-sequence-sequence u v H (succ-ℕ n))
Recent changes
- 2025-08-30. Louis Wasserman and Fredrik Bakke. Move sequences to
lists
namespace (#1476). - 2025-08-30. malarbol and Louis Wasserman. Arithmetic and geometric sequences in semirings (#1475).