Partial sums of sequences in semirings

Content created by Louis Wasserman, Fredrik Bakke and malarbol.

Created on 2025-08-30.
Last modified on 2025-08-30.

module ring-theory.partial-sums-sequences-semirings where
Imports
open import elementary-number-theory.natural-numbers

open import foundation.homotopies
open import foundation.identity-types
open import foundation.universe-levels

open import lists.finite-sequences
open import lists.sequences

open import ring-theory.semirings
open import ring-theory.sums-of-finite-sequences-of-elements-semirings

Ideas

The sequence of partial sums of a sequence u in a semiring is the sequence of sums of terms of u:

n ↦ Σ (k ≤ n) (u k).

Definitions

Partial sums of terms of a sequence in a semiring

module _
  {l : Level} (R : Semiring l) (u :   type-Semiring R)
  where

  seq-sum-sequence-Semiring :   type-Semiring R
  seq-sum-sequence-Semiring n =
    sum-fin-sequence-type-Semiring
      ( R)
      ( succ-ℕ n)
      ( fin-sequence-sequence u (succ-ℕ n))

Properties

Homotopic sequences have homotopic partial sums

module _
  {l : Level} (R : Semiring l) {u v :   type-Semiring R}
  where

  htpy-seq-sum-sequence-Semiring :
    (u ~ v) 
    seq-sum-sequence-Semiring R u ~ seq-sum-sequence-Semiring R v
  htpy-seq-sum-sequence-Semiring H n =
    htpy-sum-fin-sequence-type-Semiring
      ( R)
      ( succ-ℕ n)
      ( htpy-fin-sequence-sequence u v H (succ-ℕ n))

Recent changes