Relatively prime natural numbers
Content created by Egbert Rijke, Fredrik Bakke, Jonathan Prieto-Cubides, Julian KG, Victor Blanchi, fernabnor, Gregor Perčič and louismntnu.
Created on 2022-03-09.
Last modified on 2023-11-24.
module elementary-number-theory.relatively-prime-natural-numbers where
Imports
open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.divisibility-natural-numbers open import elementary-number-theory.equality-natural-numbers open import elementary-number-theory.greatest-common-divisor-natural-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.prime-numbers open import foundation.decidable-propositions open import foundation.decidable-types open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.negated-equality open import foundation.propositions open import foundation.transport-along-identifications open import foundation.universe-levels
Idea
Two natural numbers x
and y
are said to be relatively prime if their
greatest common divisor is 1
.
Definition
is-relatively-prime-ℕ : ℕ → ℕ → UU lzero is-relatively-prime-ℕ x y = is-one-ℕ (gcd-ℕ x y)
Properties
Being relatively prime is a proposition
is-prop-is-relatively-prime-ℕ : (x y : ℕ) → is-prop (is-relatively-prime-ℕ x y) is-prop-is-relatively-prime-ℕ x y = is-set-ℕ (gcd-ℕ x y) 1 is-relatively-prime-ℕ-Prop : ℕ → ℕ → Prop lzero pr1 (is-relatively-prime-ℕ-Prop x y) = is-relatively-prime-ℕ x y pr2 (is-relatively-prime-ℕ-Prop x y) = is-prop-is-relatively-prime-ℕ x y
Being relatively prime is decidable
is-decidable-is-relatively-prime-ℕ : (x y : ℕ) → is-decidable (is-relatively-prime-ℕ x y) is-decidable-is-relatively-prime-ℕ x y = is-decidable-is-one-ℕ (gcd-ℕ x y) is-decidable-prop-is-relatively-prime-ℕ : (x y : ℕ) → is-decidable-prop (is-relatively-prime-ℕ x y) pr1 (is-decidable-prop-is-relatively-prime-ℕ x y) = is-prop-is-relatively-prime-ℕ x y pr2 (is-decidable-prop-is-relatively-prime-ℕ x y) = is-decidable-is-relatively-prime-ℕ x y is-relatively-prime-ℕ-Decidable-Prop : (x y : ℕ) → Decidable-Prop lzero pr1 (is-relatively-prime-ℕ-Decidable-Prop x y) = is-relatively-prime-ℕ x y pr2 (is-relatively-prime-ℕ-Decidable-Prop x y) = is-decidable-prop-is-relatively-prime-ℕ x y
a
and b
are relatively prime if and only if any common divisor is equal to 1
is-one-is-common-divisor-is-relatively-prime-ℕ : (x y d : ℕ) → is-relatively-prime-ℕ x y → is-common-divisor-ℕ x y d → is-one-ℕ d is-one-is-common-divisor-is-relatively-prime-ℕ x y d H K = is-one-div-one-ℕ d ( tr ( div-ℕ d) ( H) ( div-gcd-is-common-divisor-ℕ x y d K)) is-relatively-prime-is-one-is-common-divisor-ℕ : (x y : ℕ) → ((d : ℕ) → is-common-divisor-ℕ x y d → is-one-ℕ d) → is-relatively-prime-ℕ x y is-relatively-prime-is-one-is-common-divisor-ℕ x y H = H (gcd-ℕ x y) (is-common-divisor-gcd-ℕ x y)
If a
and b
are relatively prime, then so are any divisors of a
and b
is-relatively-prime-div-ℕ : (a b c d : ℕ) → div-ℕ c a → div-ℕ d b → is-relatively-prime-ℕ a b → is-relatively-prime-ℕ c d is-relatively-prime-div-ℕ a b c d H K L = is-one-is-common-divisor-is-relatively-prime-ℕ a b ( gcd-ℕ c d) ( L) ( transitive-div-ℕ (gcd-ℕ c d) c a H (div-left-factor-gcd-ℕ c d) , transitive-div-ℕ (gcd-ℕ c d) d b K (div-right-factor-gcd-ℕ c d))
For any two natural numbers a
and b
such that a + b ≠ 0
, the numbers a/gcd(a,b)
and b/gcd(a,b)
are relatively prime
is-relatively-prime-quotient-div-gcd-ℕ : (a b : ℕ) → is-nonzero-ℕ (a +ℕ b) → is-relatively-prime-ℕ ( quotient-div-ℕ (gcd-ℕ a b) a (div-left-factor-gcd-ℕ a b)) ( quotient-div-ℕ (gcd-ℕ a b) b (div-right-factor-gcd-ℕ a b)) is-relatively-prime-quotient-div-gcd-ℕ a b nz = ( uniqueness-is-gcd-ℕ ( quotient-div-ℕ (gcd-ℕ a b) a (div-left-factor-gcd-ℕ a b)) ( quotient-div-ℕ (gcd-ℕ a b) b (div-right-factor-gcd-ℕ a b)) ( gcd-ℕ ( quotient-div-ℕ (gcd-ℕ a b) a (div-left-factor-gcd-ℕ a b)) ( quotient-div-ℕ (gcd-ℕ a b) b (div-right-factor-gcd-ℕ a b))) ( quotient-div-ℕ ( gcd-ℕ a b) ( gcd-ℕ a b) ( div-gcd-is-common-divisor-ℕ a b ( gcd-ℕ a b) ( is-common-divisor-gcd-ℕ a b))) ( is-gcd-gcd-ℕ ( quotient-div-ℕ (gcd-ℕ a b) a (div-left-factor-gcd-ℕ a b)) ( quotient-div-ℕ (gcd-ℕ a b) b (div-right-factor-gcd-ℕ a b))) ( is-gcd-quotient-div-gcd-ℕ ( is-nonzero-gcd-ℕ a b nz) ( is-common-divisor-gcd-ℕ a b))) ∙ ( is-idempotent-quotient-div-ℕ ( gcd-ℕ a b) ( is-nonzero-gcd-ℕ a b nz) ( div-gcd-is-common-divisor-ℕ a b ( gcd-ℕ a b) ( is-common-divisor-gcd-ℕ a b)))
If a
and b
are prime and distinct, then they are relatively prime
module _ (a b : ℕ) (pa : is-prime-ℕ a) (pb : is-prime-ℕ b) (n : a ≠ b) where is-one-is-common-divisor-is-prime-ℕ : (d : ℕ) → is-common-divisor-ℕ a b d → is-one-ℕ d is-one-is-common-divisor-is-prime-ℕ d c = pr1 ( pa d) ( ( λ e → is-not-one-is-prime-ℕ ( a) ( pa) ( pr1 (pb a) (n , (tr (λ x → div-ℕ x b) e (pr2 c))))) , ( pr1 c)) is-relatively-prime-is-prime-ℕ : is-relatively-prime-ℕ a b is-relatively-prime-is-prime-ℕ = is-relatively-prime-is-one-is-common-divisor-ℕ ( a) ( b) ( is-one-is-common-divisor-is-prime-ℕ)
Recent changes
- 2023-11-24. Egbert Rijke. Refactor precomposition (#937).
- 2023-10-09. Egbert Rijke. Navigation tables for all files related to cyclic types, groups, and rings (#823).
- 2023-10-09. Fredrik Bakke and Egbert Rijke. Negated equality (#822).
- 2023-09-21. Egbert Rijke and Gregor Perčič. The classification of cyclic rings (#757).
- 2023-09-11. Fredrik Bakke. Transport along and action on equivalences (#706).