Polygons
Content created by Egbert Rijke, Fredrik Bakke, Jonathan Prieto-Cubides and Elisabeth Stenholm.
Created on 2022-02-10.
Last modified on 2024-12-03.
module graph-theory.polygons where
Imports
open import elementary-number-theory.modular-arithmetic open import elementary-number-theory.natural-numbers open import foundation.decidable-equality open import foundation.dependent-pair-types open import foundation.fibers-of-maps open import foundation.functoriality-propositional-truncation open import foundation.mere-equivalences open import foundation.sets open import foundation.universe-levels open import foundation.unordered-pairs open import graph-theory.equivalences-undirected-graphs open import graph-theory.mere-equivalences-undirected-graphs open import graph-theory.undirected-graphs open import univalent-combinatorics.finite-types
Idea
A polygon is an undirected graph that
is merely equivalent to a
graph with vertices the underlying type of the
standard cyclic group
ℤ-Mod k
and an edge from each x ∈ ℤ-Mod k
to x+1
. This defines for each
k ∈ ℕ
the type of all k
-gons. The type of all k
-gons is a concrete
presentation of the dihedral group Dₖ
.
Definition
Standard polygons
vertex-standard-polygon-Undirected-Graph : ℕ → UU lzero vertex-standard-polygon-Undirected-Graph k = ℤ-Mod k unordered-pair-vertices-standard-polygon-Undirected-Graph : ℕ → UU (lsuc lzero) unordered-pair-vertices-standard-polygon-Undirected-Graph k = unordered-pair (vertex-standard-polygon-Undirected-Graph k) edge-standard-polygon-Undirected-Graph : (k : ℕ) → unordered-pair-vertices-standard-polygon-Undirected-Graph k → UU lzero edge-standard-polygon-Undirected-Graph k p = Σ ( type-unordered-pair p) ( λ x → fiber ( element-unordered-pair p) ( succ-ℤ-Mod k (element-unordered-pair p x))) standard-polygon-Undirected-Graph : ℕ → Undirected-Graph lzero lzero pr1 (standard-polygon-Undirected-Graph k) = vertex-standard-polygon-Undirected-Graph k pr2 (standard-polygon-Undirected-Graph k) = edge-standard-polygon-Undirected-Graph k
The type of all polygons with k
vertices
Polygon : ℕ → UU (lsuc lzero) Polygon k = Σ ( Undirected-Graph lzero lzero) ( mere-equiv-Undirected-Graph (standard-polygon-Undirected-Graph k)) module _ (k : ℕ) (X : Polygon k) where undirected-graph-Polygon : Undirected-Graph lzero lzero undirected-graph-Polygon = pr1 X mere-equiv-Polygon : mere-equiv-Undirected-Graph ( standard-polygon-Undirected-Graph k) ( undirected-graph-Polygon) mere-equiv-Polygon = pr2 X vertex-Polygon : UU lzero vertex-Polygon = vertex-Undirected-Graph undirected-graph-Polygon unordered-pair-vertices-Polygon : UU (lsuc lzero) unordered-pair-vertices-Polygon = unordered-pair vertex-Polygon edge-Polygon : unordered-pair-vertices-Polygon → UU lzero edge-Polygon = edge-Undirected-Graph undirected-graph-Polygon vertex-mere-equiv-Polygon : mere-equiv (ℤ-Mod k) vertex-Polygon vertex-mere-equiv-Polygon = map-trunc-Prop ( vertex-equiv-equiv-Undirected-Graph ( standard-polygon-Undirected-Graph k) ( undirected-graph-Polygon)) ( mere-equiv-Polygon) is-finite-vertex-Polygon : is-nonzero-ℕ k → is-finite vertex-Polygon is-finite-vertex-Polygon H = is-finite-mere-equiv vertex-mere-equiv-Polygon (is-finite-ℤ-Mod H) is-set-vertex-Polygon : is-set vertex-Polygon is-set-vertex-Polygon = is-set-mere-equiv' vertex-mere-equiv-Polygon (is-set-ℤ-Mod k) has-decidable-equality-vertex-Polygon : has-decidable-equality vertex-Polygon has-decidable-equality-vertex-Polygon = has-decidable-equality-mere-equiv' ( vertex-mere-equiv-Polygon) ( has-decidable-equality-ℤ-Mod k)
Properties
The type of vertices of a polygon is a set
is-set-vertex-standard-polygon-Undirected-Graph : (k : ℕ) → is-set (vertex-standard-polygon-Undirected-Graph k) is-set-vertex-standard-polygon-Undirected-Graph k = is-set-ℤ-Mod k
Every edge is between distinct points
This remains to be formalized.
Every polygon is a simple graph
This remains to be formalized.
See also
Table of files related to cyclic types, groups, and rings
External links
- Cycle graph on Wikidata
- Cycle graph at Wikipedia
- Cycle graph at Wolfram MathWorld
Recent changes
- 2024-12-03. Egbert Rijke. Hofmann-Streicher universes for graphs and globular types (#1196).
- 2024-10-16. Fredrik Bakke. Some links in elementary number theory (#1199).
- 2024-10-09. Fredrik Bakke. Idea text
set-theory
(#1189). - 2023-10-13. Egbert Rijke. Fix links to wikidata to the recommended links; add concept tags at end of file for testing purposes (#837).
- 2023-10-12. Egbert Rijke. Creating internal and external links in Graph Theory (#832).