Absolute value on closed intervals in the real numbers
Content created by Louis Wasserman.
Created on 2025-10-25.
Last modified on 2025-10-25.
module real-numbers.absolute-value-closed-intervals-real-numbers where
Imports
open import foundation.dependent-pair-types open import foundation.universe-levels open import real-numbers.absolute-value-real-numbers open import real-numbers.binary-maximum-real-numbers open import real-numbers.closed-intervals-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.negation-real-numbers open import real-numbers.nonnegative-real-numbers
Idea
The absolute value of an element
of a closed interval [a, b]
of real numbers is bounded by the
maximum of the
negation of a, and b.
Definition
max-abs-closed-interval-ℝ : {l1 l2 : Level} → closed-interval-ℝ l1 l2 → ℝ (l1 ⊔ l2) max-abs-closed-interval-ℝ ((a , b) , a≤b) = max-ℝ (neg-ℝ a) b
Properties
If z ∈ [x, y], then |z| ≤ max(-x, y)
abstract leq-max-abs-is-in-closed-interval-ℝ : {l1 l2 l3 : Level} ([x,y] : closed-interval-ℝ l1 l2) (z : ℝ l3) → is-in-closed-interval-ℝ [x,y] z → leq-ℝ (abs-ℝ z) (max-abs-closed-interval-ℝ [x,y]) leq-max-abs-is-in-closed-interval-ℝ ((x , y) , x≤y) z (x≤z , z≤y) = leq-abs-leq-leq-neg-ℝ ( z) ( max-ℝ (neg-ℝ x) y) ( transitive-leq-ℝ _ _ _ (leq-right-max-ℝ _ _) z≤y) ( transitive-leq-ℝ _ _ _ (leq-left-max-ℝ _ _) (neg-leq-ℝ _ _ x≤z))
The maximum absolute value of an interval is nonnegative
abstract is-nonnegative-max-abs-closed-interval-ℝ : {l1 l2 : Level} → ([a,b] : closed-interval-ℝ l1 l2) → is-nonnegative-ℝ (max-abs-closed-interval-ℝ [a,b]) is-nonnegative-max-abs-closed-interval-ℝ [a,b]@((a , b) , a≤b) = is-nonnegative-leq-ℝ⁰⁺ ( nonnegative-abs-ℝ a) ( max-ℝ (neg-ℝ a) b) ( leq-max-abs-is-in-closed-interval-ℝ [a,b] a (refl-leq-ℝ a , a≤b)) nonnegative-max-abs-closed-interval-ℝ : {l1 l2 : Level} → closed-interval-ℝ l1 l2 → ℝ⁰⁺ (l1 ⊔ l2) nonnegative-max-abs-closed-interval-ℝ [a,b] = ( max-abs-closed-interval-ℝ [a,b] , is-nonnegative-max-abs-closed-interval-ℝ [a,b])
Recent changes
- 2025-10-25. Louis Wasserman. Multiplication on the reals is uniformly continuous on each argument (#1624).