Absolute value on closed intervals in the real numbers

Content created by Louis Wasserman.

Created on 2025-10-25.
Last modified on 2025-10-25.

module real-numbers.absolute-value-closed-intervals-real-numbers where
Imports
open import foundation.dependent-pair-types
open import foundation.universe-levels

open import real-numbers.absolute-value-real-numbers
open import real-numbers.binary-maximum-real-numbers
open import real-numbers.closed-intervals-real-numbers
open import real-numbers.dedekind-real-numbers
open import real-numbers.inequality-real-numbers
open import real-numbers.negation-real-numbers
open import real-numbers.nonnegative-real-numbers

Idea

The absolute value of an element of a closed interval [a, b] of real numbers is bounded by the maximum of the negation of a, and b.

Definition

max-abs-closed-interval-ℝ :
  {l1 l2 : Level}  closed-interval-ℝ l1 l2   (l1  l2)
max-abs-closed-interval-ℝ ((a , b) , a≤b) = max-ℝ (neg-ℝ a) b

Properties

If z ∈ [x, y], then |z| ≤ max(-x, y)

abstract
  leq-max-abs-is-in-closed-interval-ℝ :
    {l1 l2 l3 : Level} ([x,y] : closed-interval-ℝ l1 l2) (z :  l3) 
    is-in-closed-interval-ℝ [x,y] z 
    leq-ℝ (abs-ℝ z) (max-abs-closed-interval-ℝ [x,y])
  leq-max-abs-is-in-closed-interval-ℝ ((x , y) , x≤y) z (x≤z , z≤y) =
    leq-abs-leq-leq-neg-ℝ
      ( z)
      ( max-ℝ (neg-ℝ x) y)
      ( transitive-leq-ℝ _ _ _ (leq-right-max-ℝ _ _) z≤y)
      ( transitive-leq-ℝ _ _ _ (leq-left-max-ℝ _ _) (neg-leq-ℝ _ _ x≤z))

The maximum absolute value of an interval is nonnegative

abstract
  is-nonnegative-max-abs-closed-interval-ℝ :
    {l1 l2 : Level}  ([a,b] : closed-interval-ℝ l1 l2) 
    is-nonnegative-ℝ (max-abs-closed-interval-ℝ [a,b])
  is-nonnegative-max-abs-closed-interval-ℝ [a,b]@((a , b) , a≤b) =
    is-nonnegative-leq-ℝ⁰⁺
      ( nonnegative-abs-ℝ a)
      ( max-ℝ (neg-ℝ a) b)
      ( leq-max-abs-is-in-closed-interval-ℝ [a,b] a (refl-leq-ℝ a , a≤b))

nonnegative-max-abs-closed-interval-ℝ :
  {l1 l2 : Level}  closed-interval-ℝ l1 l2  ℝ⁰⁺ (l1  l2)
nonnegative-max-abs-closed-interval-ℝ [a,b] =
  ( max-abs-closed-interval-ℝ [a,b] ,
    is-nonnegative-max-abs-closed-interval-ℝ [a,b])

Recent changes