Nullifying group homomorphisms
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-10-22.
Last modified on 2023-11-24.
module group-theory.nullifying-group-homomorphisms where
Imports
open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.identity-types open import foundation.propositions open import foundation.reflecting-maps-equivalence-relations open import foundation.subtypes open import foundation.type-arithmetic-dependent-pair-types open import foundation.universe-levels open import group-theory.groups open import group-theory.homomorphisms-groups open import group-theory.homomorphisms-groups-equipped-with-normal-subgroups open import group-theory.kernels-homomorphisms-groups open import group-theory.normal-subgroups
Idea
Consider a group homomorphism
f : G → H
and a normal subgroup N
of the
group G
. We say that f
nullifies N
if it
satisfies the condition
N ⊆ ker f,
i.e., if f x = 1
for all x ∈ N
. Nullifying group homomorphisms are used to
define quotient groups.
Definitions
The predicate of nullifying a normal subgroup
module _ {l1 l2 l3 : Level} (G : Group l1) (K : Group l2) where nullifies-normal-subgroup-prop-hom-Group : hom-Group G K → Normal-Subgroup l3 G → Prop (l1 ⊔ l2 ⊔ l3) nullifies-normal-subgroup-prop-hom-Group f H = leq-prop-Normal-Subgroup G H (kernel-hom-Group G K f) nullifies-normal-subgroup-hom-Group : hom-Group G K → Normal-Subgroup l3 G → UU (l1 ⊔ l2 ⊔ l3) nullifies-normal-subgroup-hom-Group f H = type-Prop (nullifies-normal-subgroup-prop-hom-Group f H)
Group homomorphisms that nullify a normal subgroup, i.e., that contain a normal subgroup in their kernel
module _ {l1 l2 l3 : Level} (G : Group l1) (K : Group l2) (H : Normal-Subgroup l3 G) where nullifying-hom-Group : UU (l1 ⊔ l2 ⊔ l3) nullifying-hom-Group = type-subtype (λ f → nullifies-normal-subgroup-prop-hom-Group G K f H) hom-nullifying-hom-Group : nullifying-hom-Group → hom-Group G K hom-nullifying-hom-Group = pr1 nullifies-normal-subgroup-nullifying-hom-Group : (f : nullifying-hom-Group) → nullifies-normal-subgroup-hom-Group G K ( hom-nullifying-hom-Group f) H nullifies-normal-subgroup-nullifying-hom-Group = pr2
Properties
A group homomorphism nullifies a normal subgroup if and only if it reflects the equivalence relation induced by the normal subgroup
module _ {l1 l2 l3 : Level} (G : Group l1) (K : Group l2) (H : Normal-Subgroup l3 G) where reflects-equivalence-relation-nullifies-normal-subgroup-hom-Group : (f : hom-Group G K) → nullifies-normal-subgroup-hom-Group G K f H → reflects-equivalence-relation ( equivalence-relation-congruence-Normal-Subgroup G H) ( map-hom-Group G K f) reflects-equivalence-relation-nullifies-normal-subgroup-hom-Group f p α = ( inv (right-unit-law-mul-Group K _)) ∙ ( inv-transpose-eq-mul-Group' K ( ( p (left-div-Group G _ _) α) ∙ ( preserves-left-div-hom-Group G K f))) nullifies-normal-subgroup-reflects-equivalence-relation-hom-Group : (f : hom-Group G K) → reflects-equivalence-relation ( equivalence-relation-congruence-Normal-Subgroup G H) ( map-hom-Group G K f) → nullifies-normal-subgroup-hom-Group G K f H nullifies-normal-subgroup-reflects-equivalence-relation-hom-Group f p x q = ( inv (preserves-unit-hom-Group G K f)) ∙ ( p ( is-closed-under-multiplication-Normal-Subgroup G H ( is-closed-under-inverses-Normal-Subgroup G H ( contains-unit-Normal-Subgroup G H)) ( q))) compute-nullifying-hom-Group : Σ ( reflecting-map-equivalence-relation ( equivalence-relation-congruence-Normal-Subgroup G H) ( type-Group K)) ( λ f → preserves-mul-Group G K (pr1 f)) ≃ nullifying-hom-Group G K H compute-nullifying-hom-Group = ( equiv-type-subtype ( λ f → is-prop-reflects-equivalence-relation ( equivalence-relation-congruence-Normal-Subgroup G H) ( set-Group K) ( pr1 f)) ( λ f → is-prop-leq-Normal-Subgroup G H (kernel-hom-Group G K f)) ( nullifies-normal-subgroup-reflects-equivalence-relation-hom-Group) ( reflects-equivalence-relation-nullifies-normal-subgroup-hom-Group)) ∘e ( equiv-right-swap-Σ)
Composition of nullifying homomorphisms and reflecting homomorphisms
module _ {l1 l2 l3 l4 l5 : Level} (G : Group l1) (H : Group l2) (K : Group l3) (N : Normal-Subgroup l4 G) (M : Normal-Subgroup l5 H) where hom-comp-nullifying-hom-reflecting-hom-Group : nullifying-hom-Group H K M → reflecting-hom-Group G H N M → hom-Group G K hom-comp-nullifying-hom-reflecting-hom-Group g f = comp-hom-Group G H K ( hom-nullifying-hom-Group H K M g) ( hom-reflecting-hom-Group G H N M f) nullifies-normal-subgroup-comp-nullifying-hom-reflecting-hom-Group : ( g : nullifying-hom-Group H K M) ( f : reflecting-hom-Group G H N M) → nullifies-normal-subgroup-hom-Group G K ( hom-comp-nullifying-hom-reflecting-hom-Group g f) ( N) nullifies-normal-subgroup-comp-nullifying-hom-reflecting-hom-Group g f x n = nullifies-normal-subgroup-nullifying-hom-Group H K M g ( map-reflecting-hom-Group G H N M f x) ( reflects-normal-subgroup-reflecting-hom-Group G H N M f x n) comp-nullifying-hom-reflecting-hom-Group : nullifying-hom-Group H K M → reflecting-hom-Group G H N M → nullifying-hom-Group G K N pr1 (comp-nullifying-hom-reflecting-hom-Group g f) = hom-comp-nullifying-hom-reflecting-hom-Group g f pr2 (comp-nullifying-hom-reflecting-hom-Group g f) = nullifies-normal-subgroup-comp-nullifying-hom-reflecting-hom-Group g f
See also
Recent changes
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-10-22. Egbert Rijke and Fredrik Bakke. Functoriality of the quotient operation on groups (#838).