Maps of prespectra
Content created by Fredrik Bakke and Egbert Rijke.
Created on 2023-10-12.
Last modified on 2024-12-03.
{-# OPTIONS --guardedness #-} module synthetic-homotopy-theory.maps-of-prespectra where
Imports
open import elementary-number-theory.natural-numbers open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.homotopies open import foundation.universe-levels open import structured-types.commuting-squares-of-pointed-maps open import structured-types.pointed-homotopies open import structured-types.pointed-maps open import structured-types.whiskering-pointed-homotopies-composition open import structured-types.wild-category-of-pointed-types open import synthetic-homotopy-theory.functoriality-loop-spaces open import synthetic-homotopy-theory.prespectra
Idea
A map¶ of
prespectra f : A → B
is a
sequence of
pointed maps
fₙ : Aₙ →∗ Bₙ
such that the squares
fₙ
Aₙ --------> Bₙ
| |
| |
| |
∨ ∨
ΩAₙ₊₁ -----> ΩBₙ₊₁
Ωfₙ₊₁
commute in the category of pointed types.
Definitions
Maps of prespectra
coherence-map-Prespectrum : {l1 l2 : Level} (A : Prespectrum l1) (B : Prespectrum l2) → ( (n : ℕ) → pointed-type-Prespectrum A n →∗ pointed-type-Prespectrum B n) → UU (l1 ⊔ l2) coherence-map-Prespectrum A B f = (n : ℕ) → coherence-square-pointed-maps ( f n) ( pointed-adjoint-structure-map-Prespectrum A n) ( pointed-adjoint-structure-map-Prespectrum B n) ( pointed-map-Ω (f (succ-ℕ n))) map-Prespectrum : {l1 l2 : Level} (A : Prespectrum l1) (B : Prespectrum l2) → UU (l1 ⊔ l2) map-Prespectrum A B = Σ ( (n : ℕ) → pointed-type-Prespectrum A n →∗ pointed-type-Prespectrum B n) ( λ f → coherence-map-Prespectrum A B f)
Properties
The identity map on a prespectrum
module _ {l : Level} (A : Prespectrum l) where map-id-map-Prespectrum : (n : ℕ) → pointed-type-Prespectrum A n →∗ pointed-type-Prespectrum A n map-id-map-Prespectrum _ = id-pointed-map coherence-id-map-id-map-Prespectrum : coherence-map-Prespectrum A A map-id-map-Prespectrum coherence-id-map-id-map-Prespectrum n = pointed-homotopy-reasoning ( pointed-map-Ω id-pointed-map ∘∗ pointed-adjoint-structure-map-Prespectrum A n) ~∗ id-pointed-map ∘∗ pointed-adjoint-structure-map-Prespectrum A n by right-whisker-comp-pointed-htpy ( pointed-map-Ω id-pointed-map) ( id-pointed-map) ( preserves-id-pointed-map-Ω) ( pointed-adjoint-structure-map-Prespectrum A n) ~∗ pointed-adjoint-structure-map-Prespectrum A n by left-unit-law-comp-pointed-map ( pointed-adjoint-structure-map-Prespectrum A n) ~∗ pointed-adjoint-structure-map-Prespectrum A n ∘∗ id-pointed-map by inv-pointed-htpy ( right-unit-law-comp-pointed-map ( pointed-adjoint-structure-map-Prespectrum A n)) id-map-Prespectrum : map-Prespectrum A A id-map-Prespectrum = map-id-map-Prespectrum , coherence-id-map-id-map-Prespectrum
References
- [May99]
- J. P. May. A Concise Course in Algebraic Topology. University of Chicago Press, 09 1999. ISBN 978-0-226-51183-2. URL: https://www.math.uchicago.edu/~may/CONCISE/ConciseRevised.pdf.
Recent changes
- 2024-12-03. Egbert Rijke. Hofmann-Streicher universes for graphs and globular types (#1196).
- 2024-09-06. Fredrik Bakke. Define the noncoherent wild precategory of pointed types (#1179).
- 2024-04-25. Fredrik Bakke. chore: Fix arrowheads in character diagrams (#1124).
- 2024-03-12. Fredrik Bakke. Bibliographies (#1058).
- 2023-10-16. Fredrik Bakke and Egbert Rijke. Sequential limits (#839).