Maps of prespectra

Content created by Fredrik Bakke and Egbert Rijke.

Created on 2023-10-12.
Last modified on 2024-09-06.

{-# OPTIONS --guardedness #-}

module synthetic-homotopy-theory.maps-of-prespectra where
Imports
open import elementary-number-theory.natural-numbers

open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.homotopies
open import foundation.universe-levels

open import structured-types.commuting-squares-of-pointed-maps
open import structured-types.pointed-homotopies
open import structured-types.pointed-maps
open import structured-types.whiskering-pointed-homotopies-composition
open import structured-types.wild-category-of-pointed-types

open import synthetic-homotopy-theory.functoriality-loop-spaces
open import synthetic-homotopy-theory.prespectra

Idea

A map of prespectra f : A → B is a sequence of pointed maps

  fₙ : Aₙ →∗ Bₙ

such that the squares

        fₙ
  Aₙ --------> Bₙ
  |            |
  |            |
  |            |
  ∨            ∨
  ΩAₙ₊₁ -----> ΩBₙ₊₁
        Ωfₙ₊₁

commute in the category of pointed types.

Definitions

Maps of prespectra

coherence-map-Prespectrum :
  {l1 l2 : Level} (A : Prespectrum l1) (B : Prespectrum l2) 
  ( (n : ) 
    pointed-type-Prespectrum A n →∗ pointed-type-Prespectrum B n) 
  UU (l1  l2)
coherence-map-Prespectrum A B f =
  (n : ) 
  coherence-square-pointed-maps
    ( f n)
    ( pointed-adjoint-structure-map-Prespectrum A n)
    ( pointed-adjoint-structure-map-Prespectrum B n)
    ( pointed-map-Ω (f (succ-ℕ n)))

map-Prespectrum :
  {l1 l2 : Level} (A : Prespectrum l1) (B : Prespectrum l2) 
  UU (l1  l2)
map-Prespectrum A B =
  Σ ( (n : ) 
      pointed-type-Prespectrum A n →∗ pointed-type-Prespectrum B n)
    ( λ f  coherence-map-Prespectrum A B f)

Properties

The identity map on a prespectrum

module _
  {l : Level} (A : Prespectrum l)
  where

  map-id-map-Prespectrum :
    (n : )  pointed-type-Prespectrum A n →∗ pointed-type-Prespectrum A n
  map-id-map-Prespectrum _ = id-pointed-map

  coherence-id-map-id-map-Prespectrum :
    coherence-map-Prespectrum A A map-id-map-Prespectrum
  coherence-id-map-id-map-Prespectrum n =
    pointed-homotopy-reasoning
    ( pointed-map-Ω id-pointed-map ∘∗
      pointed-adjoint-structure-map-Prespectrum A n)
    ~∗ id-pointed-map ∘∗ pointed-adjoint-structure-map-Prespectrum A n
      by
        right-whisker-comp-pointed-htpy
          ( pointed-map-Ω id-pointed-map)
          ( id-pointed-map)
          ( preserves-id-pointed-map-Ω)
          ( pointed-adjoint-structure-map-Prespectrum A n)
    ~∗ pointed-adjoint-structure-map-Prespectrum A n
      by
        left-unit-law-id-pointed-map
          ( pointed-adjoint-structure-map-Prespectrum A n)
    ~∗ pointed-adjoint-structure-map-Prespectrum A n ∘∗ id-pointed-map
      by
        inv-pointed-htpy
          ( right-unit-law-id-pointed-map
            ( pointed-adjoint-structure-map-Prespectrum A n))

  id-map-Prespectrum : map-Prespectrum A A
  id-map-Prespectrum =
    map-id-map-Prespectrum , coherence-id-map-id-map-Prespectrum

References

[May99]
J. P. May. A Concise Course in Algebraic Topology. University of Chicago Press, 09 1999. ISBN 978-0-226-51183-2. URL: https://www.math.uchicago.edu/~may/CONCISE/ConciseRevised.pdf.

Recent changes