Yoneda identity types

Content created by Fredrik Bakke.

Created on 2024-02-08.
Last modified on 2024-03-12.

module foundation.yoneda-identity-types where
Imports
open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.function-extensionality
open import foundation.multivariable-homotopies
open import foundation.strictly-right-unital-concatenation-identifications
open import foundation.transport-along-identifications
open import foundation.univalence
open import foundation.universal-property-identity-systems
open import foundation.universe-levels

open import foundation-core.contractible-types
open import foundation-core.equivalences
open import foundation-core.function-types
open import foundation-core.functoriality-dependent-pair-types
open import foundation-core.homotopies
open import foundation-core.identity-types
open import foundation-core.retractions
open import foundation-core.sections
open import foundation-core.torsorial-type-families

Idea

The standard definition of identity types has the limitation that many of the basic operations only satisfy algebraic laws weakly. On this page, we consider the Yoneda identity types

  (x =ʸ y) := (z : A) → (z = x) → (z = y)

Through the interpretation of types as ∞-categories, where the hom-space hom(x , y) is defined to be the identity type x = y, we may observe that this is an instance of the Yoneda embedding. We use a superscript y in the notation of the Yoneda identity types, and similarly we call elements of the Yoneda identity types for Yoneda identifications.

The Yoneda identity types are equivalent to the standard identity types, but satisfy strict laws

  • (p ∙ʸ q) ∙ʸ r ≐ p ∙ʸ (q ∙ʸ r),
  • reflʸ ∙ʸ p ≐ p, and
  • p ∙ʸ reflʸ ≐ p.

This is achieved by proxying to function composition and utilizing its computational properties, and relies heavily on the function extensionality axiom. More concretely, the reflexivity is given by the identity function, and path concatenation is given by function composition.

In addition to these strictness laws, we can make the type satisfy the strict law invʸ reflʸ ≐ reflʸ. Moreover, while the induction principle of the Yoneda identity types does not in general satisfy the computation rule strictly, we can define its recursion principle such that does.

Definition

module _
  {l : Level} {A : UU l}
  where

  yoneda-Id : (x y : A)  UU l
  yoneda-Id x y = (z : A)  z  x  z  y

  infix 6 _=ʸ_
  _=ʸ_ : A  A  UU l
  (a =ʸ b) = yoneda-Id a b

We define the reflexivity by the identity function:

  reflʸ : {x : A}  x =ʸ x
  reflʸ z = id

Properties

Elements of the Yoneda identity type act like postconcatenation operations

The following is a collection of properties of Yoneda identifications similar to properties of the postconcatenation operation of identifications.

module _
  {l : Level} {A : UU l}
  where

  commutative-preconcat-Id-yoneda-Id :
    {x y z w : A} (f : x =ʸ y) (p : w  z) (q : z  x) 
    f w (p  q)  p  f z q
  commutative-preconcat-Id-yoneda-Id f refl q = refl

  commutative-preconcat-refl-Id-yoneda-Id :
    {x y z : A} (f : x =ʸ y) (q : z  x)  f z q  q  f x refl
  commutative-preconcat-refl-Id-yoneda-Id {z = z} f q =
    ap (f z) (inv right-unit)  commutative-preconcat-Id-yoneda-Id f q refl

  commutative-preconcatr-Id-yoneda-Id :
    {x y z w : A} (f : x =ʸ y) (p : w  z) (q : z  x) 
    f w (p ∙ᵣ q)  p ∙ᵣ f z q
  commutative-preconcatr-Id-yoneda-Id {x} {y} {z} {w} f p q =
    ( ap (f w) (eq-concat-right-strict-concat p q)) 
    ( commutative-preconcat-Id-yoneda-Id f p q) 
    ( eq-right-strict-concat-concat p (f z q))

  commutative-preconcatr-refl-Id-yoneda-Id :
    {x y z : A} (f : x =ʸ y) (q : z  x)  f z q  q ∙ᵣ f x refl
  commutative-preconcatr-refl-Id-yoneda-Id f q =
    commutative-preconcatr-Id-yoneda-Id f q refl

  compute-inv-Id-yoneda-Id :
    {x y : A} (f : x =ʸ y)  f y (inv (f x refl))  refl
  compute-inv-Id-yoneda-Id {x} f =
    ( commutative-preconcat-refl-Id-yoneda-Id f (inv (f x refl))) 
    ( left-inv (f x refl))

  inv-distributive-inv-Id-yoneda-Id :
    {x y z : A} (f : x =ʸ y) (g : x =ʸ z) 
    inv (g y (inv (f x refl)))  f z (inv (g x refl))
  inv-distributive-inv-Id-yoneda-Id {x} f g =
    ( ap inv (commutative-preconcat-refl-Id-yoneda-Id g (inv (f x refl)))) 
    ( distributive-inv-concat (inv (f x refl)) (g x refl)) 
    ( ap (inv (g x refl) ∙_) (inv-inv (f x refl))) 
    ( inv (commutative-preconcat-refl-Id-yoneda-Id f (inv (g x refl))))

  distributive-inv-Id-yoneda-Id :
    {x y z : A} (f : x =ʸ y) (g : x =ʸ z) 
    f z (inv (g x refl))  inv (g y (inv (f x refl)))
  distributive-inv-Id-yoneda-Id f g =
    inv (inv-distributive-inv-Id-yoneda-Id f g)

The Yoneda identity types are equivalent to the standard identity types

The equivalence (x = y) ≃ (x =ʸ y) is defined from left to right by the postconcatenation operation

  yoneda-eq-eq := p ↦ (q ↦ q ∙ p)   : x = y → x =ʸ y,

and from right to left by evaluation at the reflexivity

  eq-yoneda-eq := f ↦ f refl   : x =ʸ y → x = y.

It should be noted that we define the map x = y → x =ʸ y using the strictly right unital concatenation operation. While this obstructs us from showing that the homotopy eq-yoneda-eq ∘ yoneda-eq-eq ~ id holds by reflexivity as demonstrated by the computation

  eq-yoneda-eq ∘ yoneda-eq-eq
  ≐ p ↦ (f ↦ f refl) (q ↦ q ∙ p)
  ≐ p ↦ ((q ↦ q ∙ p) refl)
  ≐ p ↦ refl ∙ p,

it allows us to show that reflexivities are preserved strictly in both directions, and not just from x =ʸ y to x = y.

From left to right:

  yoneda-eq-eq refl ≐ (p ↦ (q ↦ q ∙ p)) refl ≐ (q ↦ q ∙ refl) ≐ (q ↦ q) ≐ reflʸ

and from right to left:

  eq-yoneda-eq reflʸ ≐ (f ↦ f refl) reflʸ ≐ (q ↦ q) refl ≐ refl.
module _
  {l : Level} {A : UU l} {x y : A}
  where

  yoneda-eq-eq : x  y  x =ʸ y
  yoneda-eq-eq p z q = q ∙ᵣ p

  eq-yoneda-eq : x =ʸ y  x  y
  eq-yoneda-eq f = f x refl

The construction of the homotopy yoneda-eq-eq ∘ eq-yoneda-eq ~ id requires the function extensionality axiom. And while we could show an analogous induction principle of the Yoneda identity types without the use of this axiom, function extensionality will become indispensable regardless when we proceed to proving miscellaneous algebraic laws of the Yoneda identity type.

  is-section-eq-yoneda-eq :
    is-section yoneda-eq-eq eq-yoneda-eq
  is-section-eq-yoneda-eq f =
    eq-multivariable-htpy 2
      ( λ _ p  inv (commutative-preconcatr-refl-Id-yoneda-Id f p))

  is-retraction-eq-yoneda-eq :
    is-retraction yoneda-eq-eq eq-yoneda-eq
  is-retraction-eq-yoneda-eq p = left-unit-right-strict-concat

  is-equiv-yoneda-eq-eq : is-equiv yoneda-eq-eq
  pr1 (pr1 is-equiv-yoneda-eq-eq) = eq-yoneda-eq
  pr2 (pr1 is-equiv-yoneda-eq-eq) = is-section-eq-yoneda-eq
  pr1 (pr2 is-equiv-yoneda-eq-eq) = eq-yoneda-eq
  pr2 (pr2 is-equiv-yoneda-eq-eq) = is-retraction-eq-yoneda-eq

  is-equiv-eq-yoneda-eq : is-equiv eq-yoneda-eq
  pr1 (pr1 is-equiv-eq-yoneda-eq) = yoneda-eq-eq
  pr2 (pr1 is-equiv-eq-yoneda-eq) = is-retraction-eq-yoneda-eq
  pr1 (pr2 is-equiv-eq-yoneda-eq) = yoneda-eq-eq
  pr2 (pr2 is-equiv-eq-yoneda-eq) = is-section-eq-yoneda-eq

  equiv-yoneda-eq-eq : (x  y)  (x =ʸ y)
  pr1 equiv-yoneda-eq-eq = yoneda-eq-eq
  pr2 equiv-yoneda-eq-eq = is-equiv-yoneda-eq-eq

  equiv-eq-yoneda-eq : (x =ʸ y)  (x  y)
  pr1 equiv-eq-yoneda-eq = eq-yoneda-eq
  pr2 equiv-eq-yoneda-eq = is-equiv-eq-yoneda-eq

This equvialence preserves the reflexivity elements strictly in both directions.

module _
  {l : Level} {A : UU l} {x : A}
  where

  is-section-eq-yoneda-eq-refl :
    yoneda-eq-eq (eq-yoneda-eq (reflʸ {x = x}))  reflʸ
  is-section-eq-yoneda-eq-refl = refl

  preserves-refl-yoneda-eq-eq :
    yoneda-eq-eq (refl {x = x})  reflʸ
  preserves-refl-yoneda-eq-eq = refl

  preserves-refl-eq-yoneda-eq :
    eq-yoneda-eq (reflʸ {x = x})  refl
  preserves-refl-eq-yoneda-eq = refl

Below, we consider the alternative definition of yoneda-eq-eq using the strictly left unital concatenation operation on standard identity types. As we can see, the retracting homotopy holds strictly, but now yoneda-eq-eq refl does not compute strictly to reflʸ.

module _
  {l : Level} {A : UU l} {x y : A}
  where

  yoneda-eq-eq' : x  y  x =ʸ y
  yoneda-eq-eq' p z q = q  p

  is-section-eq-yoneda-eq' :
    is-section yoneda-eq-eq' eq-yoneda-eq
  is-section-eq-yoneda-eq' f =
    eq-multivariable-htpy 2
      ( λ _ p  inv (commutative-preconcat-refl-Id-yoneda-Id f p))

  is-retraction-eq-yoneda-eq' :
    is-retraction yoneda-eq-eq' eq-yoneda-eq
  is-retraction-eq-yoneda-eq' p = refl

module _
  {l : Level} {A : UU l}
  where

  preserves-refl-yoneda-eq-eq' :
    {x : A}  yoneda-eq-eq' (refl {x = x})  reflʸ
  preserves-refl-yoneda-eq-eq' =
    eq-multivariable-htpy 2  _ p  right-unit)

Torsoriality of the Yoneda identity types

module _
  {l : Level} {A : UU l} {x : A}
  where

  is-torsorial-yoneda-Id : is-torsorial (yoneda-Id x)
  is-torsorial-yoneda-Id =
    is-contr-equiv
      ( Σ A (x =_))
      ( equiv-tot  y  equiv-eq-yoneda-eq {x = x} {y}))
      ( is-torsorial-Id x)

The dependent universal property of the Yoneda identity types

module _
  {l : Level} {A : UU l} {x : A}
  where

  dependent-universal-property-identity-system-yoneda-Id :
    dependent-universal-property-identity-system
      ( yoneda-Id x)
      ( reflʸ)
  dependent-universal-property-identity-system-yoneda-Id =
    dependent-universal-property-identity-system-is-torsorial
      ( reflʸ)
      ( is-torsorial-yoneda-Id)

The induction principle for the Yoneda identity types

The Yoneda identity types satisfy the induction principle of the identity types. This states that given a base point x : A and a family of types over the identity types based at x, B : (y : A) (f : x =ʸ y) → UU l2, then to construct a dependent function g : (y : A) (f : x =ʸ y) → B y p it suffices to define it at g x reflʸ.

Note. As stated before, a drawback of the Yoneda identity types is that they do not satisfy a strict computation rule for this induction principle.

module _
  {l1 l2 : Level} {A : UU l1} {x : A}
  (B : (y : A) (f : x =ʸ y)  UU l2)
  where

  ind-yoneda-Id' :
    (b : B x reflʸ) {y : A} (f : x =ʸ y)  B y f
  ind-yoneda-Id' b {y} =
    map-inv-is-equiv
      ( dependent-universal-property-identity-system-yoneda-Id B)
      ( b)
      ( y)

  compute-ind-yoneda-Id' :
    (b : B x reflʸ) 
    ind-yoneda-Id' b reflʸ  b
  compute-ind-yoneda-Id' =
    is-section-map-inv-is-equiv
      ( dependent-universal-property-identity-system-yoneda-Id B)

  uniqueness-ind-yoneda-Id' :
    (b : (y : A) (f : x =ʸ y)  B y f) 
     y  ind-yoneda-Id' (b x reflʸ) {y})  b
  uniqueness-ind-yoneda-Id' =
    is-retraction-map-inv-is-equiv
      ( dependent-universal-property-identity-system-yoneda-Id B)

The following is a more concrete construction of the induction principle. We observe that while eq-yoneda-eq and yoneda-eq-eq preserve reflexivities strictly as required, the reduction is obstructed because the proof of is-section-eq-yoneda-eq does not reduce to refl when f ≐ reflʸ.

module _
  {l1 l2 : Level} {A : UU l1} {x : A}
  (B : (y : A) (f : x =ʸ y)  UU l2)
  where

  ind-yoneda-Id :
    (b : B x reflʸ) {y : A} (f : x =ʸ y)  B y f
  ind-yoneda-Id b {y} f =
    tr
      ( B y)
      ( is-section-eq-yoneda-eq f)
      ( ind-Id x  y p  B y (yoneda-eq-eq p)) b y (eq-yoneda-eq f))

While the induction principle does not have the desired reduction behaviour, the nondependent eliminator does. This is simply because we no longer need to transport along is-section-eq-yoneda-eq.

module _
  {l1 l2 : Level} {A : UU l1} {x : A}
  {B : A  UU l2}
  where

  rec-yoneda-Id :
    (b : B x) {y : A}  x =ʸ y  B y
  rec-yoneda-Id b f = tr B (eq-yoneda-eq f) b

  compute-rec-yoneda-Id :
    (b : B x)  rec-yoneda-Id b reflʸ  b
  compute-rec-yoneda-Id b = refl

  uniqueness-rec-yoneda-Id :
    (b : (y : A)  x =ʸ y  B y) 
     y  rec-yoneda-Id (b x reflʸ) {y})  b
  uniqueness-rec-yoneda-Id b =
    ( inv
      ( uniqueness-ind-yoneda-Id'
        ( λ y _  B y)
        ( λ y  rec-yoneda-Id (b x reflʸ)))) 
    ( uniqueness-ind-yoneda-Id'  y _  B y) b)

Structure

The Yoneda identity types form a strictly compositional weak groupoidal structure on types.

Inverting Yoneda identifications

We consider two ways of defining the inversion operation on Yoneda identifications: by the strictly right unital, and strictly left unital concatenation operation on the underlying identity type respectively. In contrast to the latter, the former enjoys the computational property

  invʸ reflʸ ≐ reflʸ,

hence it will be preferred going forward.

The inversion operation defined by the strictly right unital concatenation operation on identifications

module _
  {l : Level} {A : UU l}
  where

  invʸ : {x y : A}  x =ʸ y  y =ʸ x
  invʸ {x} f z p = p ∙ᵣ inv (f x refl)

  compute-inv-refl-yoneda-Id :
    {x : A}  invʸ (reflʸ {x = x})  reflʸ
  compute-inv-refl-yoneda-Id = refl

  inv-inv-yoneda-Id :
    {x y : A} (f : x =ʸ y)  invʸ (invʸ f)  f
  inv-inv-yoneda-Id {x} f =
    eq-multivariable-htpy 2
      ( λ _ p 
        ( ap
          ( p ∙ᵣ_)
          ( ap inv left-unit-right-strict-concat  inv-inv (f x refl))) 
        ( inv (commutative-preconcatr-refl-Id-yoneda-Id f p)))

The inversion operation corresponds to the standard inversion operation on identifications:

module _
  {l : Level} {A : UU l}
  where

  preserves-inv-yoneda-eq-eq' :
    {x y : A} (p : x  y)  yoneda-eq-eq (inv p)  invʸ (yoneda-eq-eq' p)
  preserves-inv-yoneda-eq-eq' p = refl

  preserves-inv-yoneda-eq-eq :
    {x y : A} (p : x  y)  yoneda-eq-eq (inv p)  invʸ (yoneda-eq-eq p)
  preserves-inv-yoneda-eq-eq p =
    eq-multivariable-htpy 2
      ( λ _ q  ap  r  q ∙ᵣ inv r) (inv left-unit-right-strict-concat))

  preserves-inv-eq-yoneda-eq :
    {x y : A} (f : x =ʸ y)  eq-yoneda-eq (invʸ f)  inv (eq-yoneda-eq f)
  preserves-inv-eq-yoneda-eq f = left-unit-right-strict-concat

The inversion operation defined by the strictly left unital concatenation operation on identifications

module _
  {l : Level} {A : UU l}
  where

  left-strict-inv-yoneda-Id : {x y : A}  x =ʸ y  y =ʸ x
  left-strict-inv-yoneda-Id {x} f z p = p  inv (f x refl)

  compute-left-strict-inv-yoneda-Id-refl :
    {x : A}  left-strict-inv-yoneda-Id (reflʸ {x = x})  reflʸ
  compute-left-strict-inv-yoneda-Id-refl =
    eq-multivariable-htpy 2  _ p  right-unit)

  left-strict-inv-left-strict-inv-yoneda-Id :
    {x y : A} (f : x =ʸ y) 
    left-strict-inv-yoneda-Id (left-strict-inv-yoneda-Id f)  f
  left-strict-inv-left-strict-inv-yoneda-Id {x} f =
    eq-multivariable-htpy 2
      ( λ _ p 
        ( ap (p ∙_) (inv-inv (f x refl))) 
        ( inv (commutative-preconcat-refl-Id-yoneda-Id f p)))

This inversion operation also corresponds to the standard inversion operation on identifications:

module _
  {l : Level} {A : UU l}
  where

  preserves-left-strict-inv-yoneda-eq-eq :
    {x y : A} (p : x  y) 
    yoneda-eq-eq (inv p)  left-strict-inv-yoneda-Id (yoneda-eq-eq p)
  preserves-left-strict-inv-yoneda-eq-eq p =
    eq-multivariable-htpy 2
      ( λ _ q 
        ( eq-concat-right-strict-concat q (inv p)) 
        ( ap  r  q  inv r) (inv left-unit-right-strict-concat)))

  preserves-left-strict-inv-eq-yoneda-eq :
    {x y : A} (f : x =ʸ y) 
    eq-yoneda-eq (left-strict-inv-yoneda-Id f)  inv (eq-yoneda-eq f)
  preserves-left-strict-inv-eq-yoneda-eq f = refl

Concatenation of Yoneda identifications

The concatenation operation on Yoneda identifications is defined by function composition

  f ∙ʸ g := z p ↦ g z (f z p)

and is thus strictly associative and two-sided unital (since the reflexivities are given by the identity functions).

module _
  {l : Level} {A : UU l}
  where

  infixl 15 _∙ʸ_
  _∙ʸ_ : {x y z : A}  x =ʸ y  y =ʸ z  x =ʸ z
  (f ∙ʸ g) z p = g z (f z p)

  concat-yoneda-Id : {x y : A}  x =ʸ y  (z : A)  y =ʸ z  x =ʸ z
  concat-yoneda-Id f z g = f ∙ʸ g

  concat-yoneda-Id' : (x : A) {y z : A}  y =ʸ z  x =ʸ y  x =ʸ z
  concat-yoneda-Id' x g f = f ∙ʸ g

The concatenation operation corresponds to the standard concatenation operation on identifications:

module _
  {l : Level} {A : UU l}
  where

  preserves-concat-yoneda-eq-eq :
    {x y z : A} (p : x  y) (q : y  z) 
    yoneda-eq-eq (p  q)  yoneda-eq-eq p ∙ʸ yoneda-eq-eq q
  preserves-concat-yoneda-eq-eq refl refl = refl

  preserves-concat-eq-yoneda-eq :
    {x y z : A} (f : x =ʸ y) (g : y =ʸ z) 
    eq-yoneda-eq (f ∙ʸ g)  eq-yoneda-eq f  eq-yoneda-eq g
  preserves-concat-eq-yoneda-eq {x} f g =
    commutative-preconcat-refl-Id-yoneda-Id g (f x refl)

The groupoidal laws for the Yoneda identity types

As we may now observe, associativity and the unit laws hold by refl.

module _
  {l : Level} {A : UU l} {x y : A}
  where

  assoc-yoneda-Id :
    (f : x =ʸ y) {z w : A} (g : y =ʸ z) (h : z =ʸ w) 
    (f ∙ʸ g) ∙ʸ h  f ∙ʸ (g ∙ʸ h)
  assoc-yoneda-Id f g h = refl

  left-unit-yoneda-Id :
    {f : x =ʸ y}  reflʸ ∙ʸ f  f
  left-unit-yoneda-Id = refl

  right-unit-yoneda-Id :
    {f : x =ʸ y}  f ∙ʸ reflʸ  f
  right-unit-yoneda-Id = refl

In addition, we show a range of basic algebraic laws for the Yoneda identity types.

  left-inv-yoneda-Id :
    (f : x =ʸ y)  invʸ f ∙ʸ f  reflʸ
  left-inv-yoneda-Id f =
    eq-multivariable-htpy 2
      ( λ _ p 
        ( commutative-preconcatr-Id-yoneda-Id f p (inv (f x refl))) 
        ( ap (p ∙ᵣ_) (compute-inv-Id-yoneda-Id f)))

  left-left-strict-inv-yoneda-Id :
    (f : x =ʸ y)  left-strict-inv-yoneda-Id f ∙ʸ f  reflʸ
  left-left-strict-inv-yoneda-Id f =
    eq-multivariable-htpy 2
      ( λ _ p 
        ( commutative-preconcat-Id-yoneda-Id f p (inv (f x refl))) 
        ( ap (p ∙_) (compute-inv-Id-yoneda-Id f)  right-unit))

  right-inv-yoneda-Id :
    (f : x =ʸ y)  f ∙ʸ invʸ f  reflʸ
  right-inv-yoneda-Id f =
    eq-multivariable-htpy 2
      ( λ _ p 
        ( ap
          ( _∙ᵣ inv (f x refl))
          ( commutative-preconcatr-refl-Id-yoneda-Id f p)) 
        ( assoc-right-strict-concat p (f x refl) (inv (f x refl))) 
        ( ap (p ∙ᵣ_) (right-inv-right-strict-concat (f x refl))))

  right-left-strict-inv-yoneda-Id :
    (f : x =ʸ y)  f ∙ʸ left-strict-inv-yoneda-Id f  reflʸ
  right-left-strict-inv-yoneda-Id f =
    eq-multivariable-htpy 2
      ( λ _ p 
        ( ap
          ( _∙ inv (f x refl))
          ( commutative-preconcat-refl-Id-yoneda-Id f p)) 
        ( assoc p (f x refl) (inv (f x refl))) 
        ( ap (p ∙_) (right-inv (f x refl))) 
        ( right-unit))

  distributive-inv-concat-yoneda-Id :
    (f : x =ʸ y) {z : A} (g : y =ʸ z) 
    invʸ (f ∙ʸ g)  invʸ g ∙ʸ invʸ f
  distributive-inv-concat-yoneda-Id f g =
    eq-multivariable-htpy 2
      ( λ _ p 
        ( ap
          ( p ∙ᵣ_)
          ( ( ap
              ( inv)
              ( commutative-preconcatr-refl-Id-yoneda-Id g (f x refl))) 
            ( distributive-inv-right-strict-concat (f x refl) (g y refl)))) 
          ( inv
            ( assoc-right-strict-concat p (inv (g y refl)) (inv (f x refl)))))

  distributive-left-strict-inv-concat-yoneda-Id :
    (f : x =ʸ y) {z : A} (g : y =ʸ z) 
    left-strict-inv-yoneda-Id (f ∙ʸ g) 
    left-strict-inv-yoneda-Id g ∙ʸ left-strict-inv-yoneda-Id f
  distributive-left-strict-inv-concat-yoneda-Id f g =
    eq-multivariable-htpy 2
      ( λ _ p 
        ( ap
          ( p ∙_)
          ( ( ap
              ( inv)
              ( commutative-preconcat-refl-Id-yoneda-Id g (f x refl))) 
            ( distributive-inv-concat (f x refl) (g y refl)))) 
        ( inv (assoc p (inv (g y refl)) (inv (f x refl)))))

Operations

We can define a range basic operations on the Yoneda identifications that all enjoy strict computational properties.

Action of functions on Yoneda identifications

module _
  {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A  B)
  where

  eq-ap-yoneda-Id : {x y : A}  x =ʸ y  f x  f y
  eq-ap-yoneda-Id = ap f  eq-yoneda-eq

  ap-yoneda-Id : {x y : A}  x =ʸ y  f x =ʸ f y
  ap-yoneda-Id = yoneda-eq-eq  eq-ap-yoneda-Id

  compute-ap-refl-yoneda-Id : {x : A}  ap-yoneda-Id (reflʸ {x = x})  reflʸ
  compute-ap-refl-yoneda-Id = refl

module _
  {l1 : Level} {A : UU l1}
  where

  compute-ap-id-yoneda-Id : {x y : A} (p : x =ʸ y)  ap-yoneda-Id id p  p
  compute-ap-id-yoneda-Id {x} p =
    eq-multivariable-htpy 2
      ( λ _ q 
        ( ap (q ∙ᵣ_) (ap-id (p x refl))) 
        ( inv (commutative-preconcatr-refl-Id-yoneda-Id p q)))

Action of binary functions on Yoneda identifications

We obtain an action of binary functions on Yoneda identifications that computes on both arguments using one of the two sides in the Gray interchanger diagram

                      ap (r ↦ f x r) q
                 f x y -------------> f x y'
                   |                    |
                   |                    |
  ap (r ↦ f r y) p |                    | ap (r ↦ f r y') p
                   |                    |
                   ∨                    ∨
                 f x' y ------------> f x' y'
                      ap (r ↦ f x' r) q

and the fact that the concatenation operation on Yoneda identifications is two-sided strictly unital.

module _
  {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} (f : A  B  C)
  where

  ap-binary-yoneda-Id :
    {x x' : A} (p : x =ʸ x') {y y' : B} (q : y =ʸ y')  f x y =ʸ f x' y'
  ap-binary-yoneda-Id {x} {x'} p {y} {y'} q =
    ap-yoneda-Id  z  f z y) p ∙ʸ ap-yoneda-Id (f x') q

  left-unit-ap-binary-yoneda-Id :
    {x : A} {y y' : B} (q : y =ʸ y') 
    ap-binary-yoneda-Id reflʸ q  ap-yoneda-Id (f x) q
  left-unit-ap-binary-yoneda-Id q = refl

  right-unit-ap-binary-yoneda-Id :
    {x x' : A} (p : x =ʸ x') {y : B} 
    ap-binary-yoneda-Id p reflʸ  ap-yoneda-Id  z  f z y) p
  right-unit-ap-binary-yoneda-Id p = refl

Transport along Yoneda identifications

module _
  {l1 l2 : Level} {A : UU l1} (B : A  UU l2)
  where

  tr-yoneda-Id : {x y : A}  x =ʸ y  B x  B y
  tr-yoneda-Id = tr B  eq-yoneda-eq

  compute-tr-refl-yoneda-Id : {x : A}  tr-yoneda-Id (reflʸ {x = x})  id
  compute-tr-refl-yoneda-Id = refl

Standard function extensionality with respect to Yoneda identifications

module _
  {l1 l2 : Level} {A : UU l1} {B : A  UU l2} {f g : (x : A)  B x}
  where

  htpy-yoneda-eq : f =ʸ g  f ~ g
  htpy-yoneda-eq = htpy-eq  eq-yoneda-eq

  yoneda-eq-htpy : f ~ g  f =ʸ g
  yoneda-eq-htpy = yoneda-eq-eq  eq-htpy

  equiv-htpy-yoneda-eq : (f =ʸ g)  (f ~ g)
  equiv-htpy-yoneda-eq = equiv-funext ∘e equiv-eq-yoneda-eq

  equiv-yoneda-eq-htpy : (f ~ g)  (f =ʸ g)
  equiv-yoneda-eq-htpy = equiv-yoneda-eq-eq ∘e equiv-eq-htpy

  funext-yoneda-Id : is-equiv htpy-yoneda-eq
  funext-yoneda-Id = is-equiv-map-equiv equiv-htpy-yoneda-eq

Standard univalence with respect to Yoneda identifications

module _
  {l1 : Level} {A B : UU l1}
  where

  map-yoneda-eq : A =ʸ B  A  B
  map-yoneda-eq = map-eq  eq-yoneda-eq

  equiv-yoneda-eq : A =ʸ B  A  B
  equiv-yoneda-eq = equiv-eq  eq-yoneda-eq

  yoneda-eq-equiv : A  B  A =ʸ B
  yoneda-eq-equiv = yoneda-eq-eq  eq-equiv

  equiv-equiv-yoneda-eq : (A =ʸ B)  (A  B)
  equiv-equiv-yoneda-eq = equiv-univalence ∘e equiv-eq-yoneda-eq

  is-equiv-equiv-yoneda-eq : is-equiv equiv-yoneda-eq
  is-equiv-equiv-yoneda-eq = is-equiv-map-equiv equiv-equiv-yoneda-eq

  equiv-yoneda-eq-equiv : (A  B)  (A =ʸ B)
  equiv-yoneda-eq-equiv = equiv-yoneda-eq-eq ∘e equiv-eq-equiv A B

  is-equiv-yoneda-eq-equiv : is-equiv yoneda-eq-equiv
  is-equiv-yoneda-eq-equiv = is-equiv-map-equiv equiv-yoneda-eq-equiv

Whiskering of Yoneda identifications

module _
  {l : Level} {A : UU l} {x y z : A}
  where

  left-whisker-concat-yoneda-Id :
    (p : x =ʸ y) {q r : y =ʸ z}  q =ʸ r  p ∙ʸ q =ʸ p ∙ʸ r
  left-whisker-concat-yoneda-Id p β = ap-yoneda-Id (p ∙ʸ_) β

  right-whisker-concat-yoneda-Id :
    {p q : x =ʸ y}  p =ʸ q  (r : y =ʸ z)  p ∙ʸ r =ʸ q ∙ʸ r
  right-whisker-concat-yoneda-Id α r = ap-yoneda-Id (_∙ʸ r) α

Horizontal concatenation of Yoneda identifications

We define horizontal concatenation in such a way that it computes as left whiskering when the left-hand argument is refl, and computes as right whiskering when the right-hand argument is refl.

module _
  {l : Level} {A : UU l} {x y z : A}
  where

  horizontal-concat-yoneda-Id² :
    {p q : x =ʸ y}  p =ʸ q  {u v : y =ʸ z}  u =ʸ v  p ∙ʸ u =ʸ q ∙ʸ v
  horizontal-concat-yoneda-Id² = ap-binary-yoneda-Id (_∙ʸ_)

  compute-left-horizontal-concat-yoneda-Id² :
    {p : x =ʸ y} {u v : y =ʸ z} (β : u =ʸ v) 
    horizontal-concat-yoneda-Id² reflʸ β 
    left-whisker-concat-yoneda-Id p β
  compute-left-horizontal-concat-yoneda-Id² β = refl

  compute-right-horizontal-concat-yoneda-Id² :
    {p q : x =ʸ y} (α : p =ʸ q) {u : y =ʸ z} 
    horizontal-concat-yoneda-Id² α (reflʸ {x = u}) 
    right-whisker-concat-yoneda-Id α u
  compute-right-horizontal-concat-yoneda-Id² α = refl

module _
  {l : Level} {A : UU l} {x y : A}
  where

  left-unit-horizontal-concat-yoneda-Id² :
    {p q : x =ʸ y} (α : p =ʸ q) 
    horizontal-concat-yoneda-Id² reflʸ α  α
  left-unit-horizontal-concat-yoneda-Id² = compute-ap-id-yoneda-Id

  right-unit-horizontal-concat-yoneda-Id² :
    {p q : x =ʸ y} (α : p =ʸ q) 
    horizontal-concat-yoneda-Id² α (reflʸ {x = reflʸ})  α
  right-unit-horizontal-concat-yoneda-Id² = compute-ap-id-yoneda-Id

Since concatenation on Yoneda identifications is strictly associative, the composites

  horizontal-concat-yoneda-Id² (horizontal-concat-yoneda-Id² α β) γ

and

  horizontal-concat-yoneda-Id² α (horizontal-concat-yoneda-Id² β γ)

inhabit the same type. Therefore, we can pose the question of whether the horizontal concatenation operation is associative, which it is, albeit weakly:

module _
  {l : Level} {A : UU l} {x y z w : A}
  where

  assoc-horizontal-concat-yoneda-Id² :
    {p p' : x =ʸ y} (α : p =ʸ p')
    {q q' : y =ʸ z} (β : q =ʸ q')
    {r r' : z =ʸ w} (γ : r =ʸ r') 
    horizontal-concat-yoneda-Id² (horizontal-concat-yoneda-Id² α β) γ 
    horizontal-concat-yoneda-Id² α (horizontal-concat-yoneda-Id² β γ)
  assoc-horizontal-concat-yoneda-Id² α {q} β {r} =
    ind-yoneda-Id
      ( λ _ γ 
        ( horizontal-concat-yoneda-Id² (horizontal-concat-yoneda-Id² α β) γ) 
        ( horizontal-concat-yoneda-Id² α (horizontal-concat-yoneda-Id² β γ)))
      ( ind-yoneda-Id
        ( λ _ β 
          ( horizontal-concat-yoneda-Id²
            ( horizontal-concat-yoneda-Id² α β)
            ( reflʸ {x = r})) 
          ( horizontal-concat-yoneda-Id²
            ( α)
            ( horizontal-concat-yoneda-Id² β (reflʸ {x = r}))))
        ( ind-yoneda-Id
          ( λ _ α 
            ( horizontal-concat-yoneda-Id²
              ( horizontal-concat-yoneda-Id² α (reflʸ {x = q}))
              ( reflʸ {x = r})) 
            ( horizontal-concat-yoneda-Id²
              ( α)
              ( horizontal-concat-yoneda-Id² (reflʸ {x = q}) (reflʸ {x = r}))))
          ( refl)
          ( α))
        ( β))

Vertical concatenation of Yoneda identifications

module _
  {l : Level} {A : UU l} {x y : A}
  where

  vertical-concat-yoneda-Id² :
    {p q r : x =ʸ y}  p =ʸ q  q =ʸ r  p =ʸ r
  vertical-concat-yoneda-Id² α β = α ∙ʸ β

See also

References

[Esc19]
Martín Hötzel Escardó. Definitions of equivalence satisfying judgmental/strict groupoid laws? Google groups forum discussion, 09 2019. URL: https://groups.google.com/g/homotopytypetheory/c/FfiZj1vrkmQ/m/GJETdy0AAgAJ.

Recent changes