Natural transformations between functors from small to large categories
Content created by Daniel Gratzer, Egbert Rijke, Elisabeth Stenholm and Fredrik Bakke.
Created on 2023-11-01.
Last modified on 2023-11-27.
module category-theory.natural-transformations-functors-from-small-to-large-categories where
Imports
open import category-theory.categories open import category-theory.functors-from-small-to-large-categories open import category-theory.large-categories open import category-theory.natural-transformations-functors-from-small-to-large-precategories open import foundation.dependent-pair-types open import foundation.embeddings open import foundation.equivalences open import foundation.homotopies open import foundation.identity-types open import foundation.propositions open import foundation.sets open import foundation.universe-levels
Idea
Given a small category C
and a
large category D
, a natural
transformation from a
functor
F : C → D
to G : C → D
consists of :
- a family of morphisms
a : (x : C) → hom (F x) (G x)
such that the following identity holds: (G f) ∘ (a x) = (a y) ∘ (F f)
, for allf : hom x y
.
Definition
module _ {l1 l2 γF γG : Level} {α : Level → Level} {β : Level → Level → Level} (C : Category l1 l2) (D : Large-Category α β) (F : functor-Small-Large-Category C D γF) (G : functor-Small-Large-Category C D γG) where hom-family-functor-Small-Large-Category : UU (l1 ⊔ β γF γG) hom-family-functor-Small-Large-Category = hom-family-functor-Small-Large-Precategory ( precategory-Category C) (large-precategory-Large-Category D) F G is-natural-transformation-Small-Large-Category : hom-family-functor-Small-Large-Category → UU (l1 ⊔ l2 ⊔ β γF γG) is-natural-transformation-Small-Large-Category = is-natural-transformation-Small-Large-Precategory ( precategory-Category C) (large-precategory-Large-Category D) F G natural-transformation-Small-Large-Category : UU (l1 ⊔ l2 ⊔ β γF γG) natural-transformation-Small-Large-Category = natural-transformation-Small-Large-Precategory ( precategory-Category C) (large-precategory-Large-Category D) F G hom-natural-transformation-Small-Large-Category : natural-transformation-Small-Large-Category → hom-family-functor-Small-Large-Category hom-natural-transformation-Small-Large-Category = hom-natural-transformation-Small-Large-Precategory ( precategory-Category C) (large-precategory-Large-Category D) F G naturality-natural-transformation-Small-Large-Category : (γ : natural-transformation-Small-Large-Category) → is-natural-transformation-Small-Large-Category ( hom-natural-transformation-Small-Large-Category γ) naturality-natural-transformation-Small-Large-Category = naturality-natural-transformation-Small-Large-Precategory ( precategory-Category C) (large-precategory-Large-Category D) F G
Composition and identity of natural transformations
module _ {l1 l2 : Level} {α : Level → Level} {β : Level → Level → Level} (C : Category l1 l2) (D : Large-Category α β) where id-natural-transformation-Small-Large-Category : {γF : Level} (F : functor-Small-Large-Category C D γF) → natural-transformation-Small-Large-Category C D F F id-natural-transformation-Small-Large-Category = id-natural-transformation-Small-Large-Precategory ( precategory-Category C) (large-precategory-Large-Category D) comp-natural-transformation-Small-Large-Category : {γF γG γH : Level} (F : functor-Small-Large-Category C D γF) (G : functor-Small-Large-Category C D γG) (H : functor-Small-Large-Category C D γH) → natural-transformation-Small-Large-Category C D G H → natural-transformation-Small-Large-Category C D F G → natural-transformation-Small-Large-Category C D F H comp-natural-transformation-Small-Large-Category = comp-natural-transformation-Small-Large-Precategory ( precategory-Category C) (large-precategory-Large-Category D)
Properties
That a family of morphisms is a natural transformation is a proposition
This follows from the fact that the hom-types are sets.
module _ {l1 l2 γF γG : Level} {α : Level → Level} {β : Level → Level → Level} (C : Category l1 l2) (D : Large-Category α β) (F : functor-Small-Large-Category C D γF) (G : functor-Small-Large-Category C D γG) where is-prop-is-natural-transformation-Small-Large-Category : (γ : hom-family-functor-Small-Large-Category C D F G) → is-prop (is-natural-transformation-Small-Large-Category C D F G γ) is-prop-is-natural-transformation-Small-Large-Category = is-prop-is-natural-transformation-Small-Large-Precategory ( precategory-Category C) (large-precategory-Large-Category D) F G is-natural-transformation-prop-Small-Large-Category : (γ : hom-family-functor-Small-Large-Category C D F G) → Prop (l1 ⊔ l2 ⊔ β γF γG) is-natural-transformation-prop-Small-Large-Category = is-natural-transformation-prop-Small-Large-Precategory ( precategory-Category C) (large-precategory-Large-Category D) F G
The set of natural transformations
module _ {l1 l2 γF γG : Level} {α : Level → Level} {β : Level → Level → Level} (C : Category l1 l2) (D : Large-Category α β) (F : functor-Small-Large-Category C D γF) (G : functor-Small-Large-Category C D γG) where is-emb-hom-natural-transformation-Small-Large-Category : is-emb (hom-natural-transformation-Small-Large-Category C D F G) is-emb-hom-natural-transformation-Small-Large-Category = is-emb-hom-family-natural-transformation-Small-Large-Precategory ( precategory-Category C) (large-precategory-Large-Category D) F G emb-hom-natural-transformation-Small-Large-Category : natural-transformation-Small-Large-Category C D F G ↪ hom-family-functor-Small-Large-Category C D F G emb-hom-natural-transformation-Small-Large-Category = emb-hom-natural-transformation-Small-Large-Precategory ( precategory-Category C) (large-precategory-Large-Category D) F G is-set-natural-transformation-Small-Large-Category : is-set (natural-transformation-Small-Large-Category C D F G) is-set-natural-transformation-Small-Large-Category = is-set-natural-transformation-Small-Large-Precategory ( precategory-Category C) (large-precategory-Large-Category D) F G natural-transformation-set-Small-Large-Category : Set (l1 ⊔ l2 ⊔ β γF γG) pr1 (natural-transformation-set-Small-Large-Category) = natural-transformation-Small-Large-Category C D F G pr2 (natural-transformation-set-Small-Large-Category) = is-set-natural-transformation-Small-Large-Category extensionality-natural-transformation-Small-Large-Category : (a b : natural-transformation-Small-Large-Category C D F G) → ( a = b) ≃ ( hom-natural-transformation-Small-Large-Category C D F G a ~ hom-natural-transformation-Small-Large-Category C D F G b) extensionality-natural-transformation-Small-Large-Category = extensionality-natural-transformation-Small-Large-Precategory ( precategory-Category C) (large-precategory-Large-Category D) F G eq-htpy-hom-natural-transformation-Small-Large-Category : (a b : natural-transformation-Small-Large-Category C D F G) → ( hom-natural-transformation-Small-Large-Category C D F G a ~ hom-natural-transformation-Small-Large-Category C D F G b) → a = b eq-htpy-hom-natural-transformation-Small-Large-Category = eq-htpy-hom-natural-transformation-Small-Large-Precategory ( precategory-Category C) (large-precategory-Large-Category D) F G
Categorical laws for natural transformations
module _ {l1 l2 : Level} {α : Level → Level} {β : Level → Level → Level} (C : Category l1 l2) (D : Large-Category α β) where right-unit-law-comp-natural-transformation-Small-Large-Category : {γF γG : Level} (F : functor-Small-Large-Category C D γF) (G : functor-Small-Large-Category C D γG) (a : natural-transformation-Small-Large-Category C D F G) → comp-natural-transformation-Small-Large-Category C D F F G a ( id-natural-transformation-Small-Large-Category C D F) = a right-unit-law-comp-natural-transformation-Small-Large-Category = right-unit-law-comp-natural-transformation-Small-Large-Precategory ( precategory-Category C) (large-precategory-Large-Category D) left-unit-law-comp-natural-transformation-Small-Large-Category : {γF γG : Level} (F : functor-Small-Large-Category C D γF) (G : functor-Small-Large-Category C D γG) (a : natural-transformation-Small-Large-Category C D F G) → comp-natural-transformation-Small-Large-Category C D F G G ( id-natural-transformation-Small-Large-Category C D G) a = a left-unit-law-comp-natural-transformation-Small-Large-Category = left-unit-law-comp-natural-transformation-Small-Large-Precategory ( precategory-Category C) (large-precategory-Large-Category D) associative-comp-natural-transformation-Small-Large-Category : {γF γG γH γI : Level} (F : functor-Small-Large-Category C D γF) (G : functor-Small-Large-Category C D γG) (H : functor-Small-Large-Category C D γH) (I : functor-Small-Large-Category C D γI) (a : natural-transformation-Small-Large-Category C D F G) (b : natural-transformation-Small-Large-Category C D G H) (c : natural-transformation-Small-Large-Category C D H I) → comp-natural-transformation-Small-Large-Category C D F G I ( comp-natural-transformation-Small-Large-Category C D G H I c b) a = comp-natural-transformation-Small-Large-Category C D F H I c ( comp-natural-transformation-Small-Large-Category C D F G H b a) associative-comp-natural-transformation-Small-Large-Category = associative-comp-natural-transformation-Small-Large-Precategory ( precategory-Category C) (large-precategory-Large-Category D)
Recent changes
- 2023-11-27. Elisabeth Stenholm, Daniel Gratzer and Egbert Rijke. Additions during work on material set theory in HoTT (#910).
- 2023-11-01. Fredrik Bakke. Opposite categories, gaunt categories, replete subprecategories, large Yoneda, and miscellaneous additions (#880).