Natural transformations between functors from small to large categories

Content created by Daniel Gratzer, Egbert Rijke, Elisabeth Stenholm and Fredrik Bakke.

Created on 2023-11-01.
Last modified on 2023-11-27.

module category-theory.natural-transformations-functors-from-small-to-large-categories where
Imports
open import category-theory.categories
open import category-theory.functors-from-small-to-large-categories
open import category-theory.large-categories
open import category-theory.natural-transformations-functors-from-small-to-large-precategories

open import foundation.dependent-pair-types
open import foundation.embeddings
open import foundation.equivalences
open import foundation.homotopies
open import foundation.identity-types
open import foundation.propositions
open import foundation.sets
open import foundation.universe-levels

Idea

Given a small category C and a large category D, a natural transformation from a functor F : C → D to G : C → D consists of :

  • a family of morphisms a : (x : C) → hom (F x) (G x) such that the following identity holds:
  • (G f) ∘ (a x) = (a y) ∘ (F f), for all f : hom x y.

Definition

module _
  {l1 l2 γF γG : Level} {α : Level  Level} {β : Level  Level  Level}
  (C : Category l1 l2)
  (D : Large-Category α β)
  (F : functor-Small-Large-Category C D γF)
  (G : functor-Small-Large-Category C D γG)
  where

  hom-family-functor-Small-Large-Category : UU (l1  β γF γG)
  hom-family-functor-Small-Large-Category =
    hom-family-functor-Small-Large-Precategory
      ( precategory-Category C) (large-precategory-Large-Category D) F G

  is-natural-transformation-Small-Large-Category :
    hom-family-functor-Small-Large-Category  UU (l1  l2  β γF γG)
  is-natural-transformation-Small-Large-Category =
    is-natural-transformation-Small-Large-Precategory
      ( precategory-Category C) (large-precategory-Large-Category D) F G

  natural-transformation-Small-Large-Category : UU (l1  l2  β γF γG)
  natural-transformation-Small-Large-Category =
    natural-transformation-Small-Large-Precategory
      ( precategory-Category C) (large-precategory-Large-Category D) F G

  hom-natural-transformation-Small-Large-Category :
    natural-transformation-Small-Large-Category 
    hom-family-functor-Small-Large-Category
  hom-natural-transformation-Small-Large-Category =
    hom-natural-transformation-Small-Large-Precategory
      ( precategory-Category C) (large-precategory-Large-Category D) F G

  naturality-natural-transformation-Small-Large-Category :
    (γ : natural-transformation-Small-Large-Category) 
    is-natural-transformation-Small-Large-Category
      ( hom-natural-transformation-Small-Large-Category γ)
  naturality-natural-transformation-Small-Large-Category =
    naturality-natural-transformation-Small-Large-Precategory
      ( precategory-Category C) (large-precategory-Large-Category D) F G

Composition and identity of natural transformations

module _
  {l1 l2 : Level} {α : Level  Level} {β : Level  Level  Level}
  (C : Category l1 l2)
  (D : Large-Category α β)
  where

  id-natural-transformation-Small-Large-Category :
    {γF : Level} (F : functor-Small-Large-Category C D γF) 
    natural-transformation-Small-Large-Category C D F F
  id-natural-transformation-Small-Large-Category =
    id-natural-transformation-Small-Large-Precategory
      ( precategory-Category C) (large-precategory-Large-Category D)

  comp-natural-transformation-Small-Large-Category :
    {γF γG γH : Level}
    (F : functor-Small-Large-Category C D γF)
    (G : functor-Small-Large-Category C D γG)
    (H : functor-Small-Large-Category C D γH) 
    natural-transformation-Small-Large-Category C D G H 
    natural-transformation-Small-Large-Category C D F G 
    natural-transformation-Small-Large-Category C D F H
  comp-natural-transformation-Small-Large-Category =
    comp-natural-transformation-Small-Large-Precategory
      ( precategory-Category C) (large-precategory-Large-Category D)

Properties

That a family of morphisms is a natural transformation is a proposition

This follows from the fact that the hom-types are sets.

module _
  {l1 l2 γF γG : Level} {α : Level  Level} {β : Level  Level  Level}
  (C : Category l1 l2)
  (D : Large-Category α β)
  (F : functor-Small-Large-Category C D γF)
  (G : functor-Small-Large-Category C D γG)
  where

  is-prop-is-natural-transformation-Small-Large-Category :
    (γ : hom-family-functor-Small-Large-Category C D F G) 
    is-prop (is-natural-transformation-Small-Large-Category C D F G γ)
  is-prop-is-natural-transformation-Small-Large-Category =
    is-prop-is-natural-transformation-Small-Large-Precategory
      ( precategory-Category C) (large-precategory-Large-Category D) F G

  is-natural-transformation-prop-Small-Large-Category :
    (γ : hom-family-functor-Small-Large-Category C D F G) 
    Prop (l1  l2  β γF γG)
  is-natural-transformation-prop-Small-Large-Category =
    is-natural-transformation-prop-Small-Large-Precategory
      ( precategory-Category C) (large-precategory-Large-Category D) F G

The set of natural transformations

module _
  {l1 l2 γF γG : Level} {α : Level  Level} {β : Level  Level  Level}
  (C : Category l1 l2)
  (D : Large-Category α β)
  (F : functor-Small-Large-Category C D γF)
  (G : functor-Small-Large-Category C D γG)
  where

  is-emb-hom-natural-transformation-Small-Large-Category :
    is-emb (hom-natural-transformation-Small-Large-Category C D F G)
  is-emb-hom-natural-transformation-Small-Large-Category =
    is-emb-hom-family-natural-transformation-Small-Large-Precategory
      ( precategory-Category C) (large-precategory-Large-Category D) F G

  emb-hom-natural-transformation-Small-Large-Category :
    natural-transformation-Small-Large-Category C D F G 
    hom-family-functor-Small-Large-Category C D F G
  emb-hom-natural-transformation-Small-Large-Category =
    emb-hom-natural-transformation-Small-Large-Precategory
      ( precategory-Category C) (large-precategory-Large-Category D) F G

  is-set-natural-transformation-Small-Large-Category :
    is-set (natural-transformation-Small-Large-Category C D F G)
  is-set-natural-transformation-Small-Large-Category =
    is-set-natural-transformation-Small-Large-Precategory
      ( precategory-Category C) (large-precategory-Large-Category D) F G

  natural-transformation-set-Small-Large-Category :
    Set (l1  l2  β γF γG)
  pr1 (natural-transformation-set-Small-Large-Category) =
    natural-transformation-Small-Large-Category C D F G
  pr2 (natural-transformation-set-Small-Large-Category) =
    is-set-natural-transformation-Small-Large-Category

  extensionality-natural-transformation-Small-Large-Category :
    (a b : natural-transformation-Small-Large-Category C D F G) 
    ( a  b) 
    ( hom-natural-transformation-Small-Large-Category C D F G a ~
      hom-natural-transformation-Small-Large-Category C D F G b)
  extensionality-natural-transformation-Small-Large-Category =
    extensionality-natural-transformation-Small-Large-Precategory
      ( precategory-Category C) (large-precategory-Large-Category D) F G

  eq-htpy-hom-natural-transformation-Small-Large-Category :
    (a b : natural-transformation-Small-Large-Category C D F G) 
    ( hom-natural-transformation-Small-Large-Category C D F G a ~
      hom-natural-transformation-Small-Large-Category C D F G b) 
    a  b
  eq-htpy-hom-natural-transformation-Small-Large-Category =
    eq-htpy-hom-natural-transformation-Small-Large-Precategory
      ( precategory-Category C) (large-precategory-Large-Category D) F G

Categorical laws for natural transformations

module _
  {l1 l2 : Level} {α : Level  Level} {β : Level  Level  Level}
  (C : Category l1 l2)
  (D : Large-Category α β)
  where

  right-unit-law-comp-natural-transformation-Small-Large-Category :
    {γF γG : Level}
    (F : functor-Small-Large-Category C D γF)
    (G : functor-Small-Large-Category C D γG)
    (a : natural-transformation-Small-Large-Category C D F G) 
    comp-natural-transformation-Small-Large-Category C D F F G a
      ( id-natural-transformation-Small-Large-Category C D F)  a
  right-unit-law-comp-natural-transformation-Small-Large-Category =
    right-unit-law-comp-natural-transformation-Small-Large-Precategory
      ( precategory-Category C) (large-precategory-Large-Category D)

  left-unit-law-comp-natural-transformation-Small-Large-Category :
    {γF γG : Level}
    (F : functor-Small-Large-Category C D γF)
    (G : functor-Small-Large-Category C D γG)
    (a : natural-transformation-Small-Large-Category C D F G) 
    comp-natural-transformation-Small-Large-Category C D F G G
      ( id-natural-transformation-Small-Large-Category C D G) a  a
  left-unit-law-comp-natural-transformation-Small-Large-Category =
    left-unit-law-comp-natural-transformation-Small-Large-Precategory
      ( precategory-Category C) (large-precategory-Large-Category D)

  associative-comp-natural-transformation-Small-Large-Category :
    {γF γG γH γI : Level}
    (F : functor-Small-Large-Category C D γF)
    (G : functor-Small-Large-Category C D γG)
    (H : functor-Small-Large-Category C D γH)
    (I : functor-Small-Large-Category C D γI)
    (a : natural-transformation-Small-Large-Category C D F G)
    (b : natural-transformation-Small-Large-Category C D G H)
    (c : natural-transformation-Small-Large-Category C D H I) 
    comp-natural-transformation-Small-Large-Category C D F G I
      ( comp-natural-transformation-Small-Large-Category C D G H I c b) a 
    comp-natural-transformation-Small-Large-Category C D F H I c
      ( comp-natural-transformation-Small-Large-Category C D F G H b a)
  associative-comp-natural-transformation-Small-Large-Category =
    associative-comp-natural-transformation-Small-Large-Precategory
      ( precategory-Category C) (large-precategory-Large-Category D)

Recent changes