Discrete fields
Content created by Fredrik Bakke, Jonathan Prieto-Cubides and Egbert Rijke.
Created on 2022-04-22.
Last modified on 2023-05-04.
module commutative-algebra.discrete-fields where
Imports
open import commutative-algebra.commutative-rings open import foundation.universe-levels open import ring-theory.division-rings
Idea
A discrete field is a commutative division ring. They are called discrete, because only nonzero elements are assumed to be invertible.
Definition
is-discrete-field-Commutative-Ring : {l : Level} → Commutative-Ring l → UU l is-discrete-field-Commutative-Ring A = is-division-Ring (ring-Commutative-Ring A)
Recent changes
- 2023-05-04. Egbert Rijke. Cleaning up commutative algebra (#589).
- 2023-03-13. Jonathan Prieto-Cubides. More maintenance (#506).
- 2023-03-10. Fredrik Bakke. Additions to
fix-import
(#497). - 2023-03-07. Fredrik Bakke. Add blank lines between
<details>
tags and markdown syntax (#490). - 2023-03-07. Jonathan Prieto-Cubides. Show module declarations (#488).