Positive rational numbers
Content created by Fredrik Bakke and malarbol.
Created on 2024-04-25.
Last modified on 2024-09-28.
{-# OPTIONS --lossy-unification #-} module elementary-number-theory.positive-rational-numbers where
Imports
open import elementary-number-theory.addition-integer-fractions open import elementary-number-theory.addition-rational-numbers open import elementary-number-theory.additive-group-of-rational-numbers open import elementary-number-theory.cross-multiplication-difference-integer-fractions open import elementary-number-theory.difference-rational-numbers open import elementary-number-theory.inequality-rational-numbers open import elementary-number-theory.integer-fractions open import elementary-number-theory.integers open import elementary-number-theory.multiplication-integer-fractions open import elementary-number-theory.multiplication-integers open import elementary-number-theory.multiplication-rational-numbers open import elementary-number-theory.multiplicative-inverses-positive-integer-fractions open import elementary-number-theory.multiplicative-monoid-of-rational-numbers open import elementary-number-theory.negative-integers open import elementary-number-theory.nonzero-rational-numbers open import elementary-number-theory.positive-and-negative-integers open import elementary-number-theory.positive-integer-fractions open import elementary-number-theory.positive-integers open import elementary-number-theory.rational-numbers open import elementary-number-theory.reduced-integer-fractions open import elementary-number-theory.strict-inequality-rational-numbers open import foundation.action-on-identifications-functions open import foundation.cartesian-product-types open import foundation.coproduct-types open import foundation.dependent-pair-types open import foundation.empty-types open import foundation.equivalences open import foundation.function-types open import foundation.identity-types open import foundation.logical-equivalences open import foundation.negation open import foundation.propositions open import foundation.sets open import foundation.subtypes open import foundation.transport-along-identifications open import foundation.universe-levels open import group-theory.commutative-monoids open import group-theory.invertible-elements-monoids open import group-theory.monoids open import group-theory.semigroups open import group-theory.submonoids open import group-theory.submonoids-commutative-monoids open import group-theory.subsemigroups
Idea
A rational number x
is said to
be positive¶
if its underlying fraction is
positive.
Positive rational numbers are a subsemigroup of the additive monoid of rational numbers and a submonoid of the multiplicative monoid of rational numbers.
Definitions
The property of being a positive rational number
module _ (x : ℚ) where is-positive-ℚ : UU lzero is-positive-ℚ = is-positive-fraction-ℤ (fraction-ℚ x) is-prop-is-positive-ℚ : is-prop is-positive-ℚ is-prop-is-positive-ℚ = is-prop-is-positive-fraction-ℤ (fraction-ℚ x) is-positive-prop-ℚ : Prop lzero pr1 is-positive-prop-ℚ = is-positive-ℚ pr2 is-positive-prop-ℚ = is-prop-is-positive-ℚ
The type of positive rational numbers
positive-ℚ : UU lzero positive-ℚ = type-subtype is-positive-prop-ℚ ℚ⁺ : UU lzero ℚ⁺ = positive-ℚ module _ (x : positive-ℚ) where rational-ℚ⁺ : ℚ rational-ℚ⁺ = pr1 x fraction-ℚ⁺ : fraction-ℤ fraction-ℚ⁺ = fraction-ℚ rational-ℚ⁺ numerator-ℚ⁺ : ℤ numerator-ℚ⁺ = numerator-ℚ rational-ℚ⁺ denominator-ℚ⁺ : ℤ denominator-ℚ⁺ = denominator-ℚ rational-ℚ⁺ is-positive-rational-ℚ⁺ : is-positive-ℚ rational-ℚ⁺ is-positive-rational-ℚ⁺ = pr2 x is-positive-fraction-ℚ⁺ : is-positive-fraction-ℤ fraction-ℚ⁺ is-positive-fraction-ℚ⁺ = is-positive-rational-ℚ⁺ is-positive-numerator-ℚ⁺ : is-positive-ℤ numerator-ℚ⁺ is-positive-numerator-ℚ⁺ = is-positive-rational-ℚ⁺ is-positive-denominator-ℚ⁺ : is-positive-ℤ denominator-ℚ⁺ is-positive-denominator-ℚ⁺ = is-positive-denominator-ℚ rational-ℚ⁺ abstract eq-ℚ⁺ : {x y : ℚ⁺} → rational-ℚ⁺ x = rational-ℚ⁺ y → x = y eq-ℚ⁺ {x} {y} = eq-type-subtype is-positive-prop-ℚ
Properties
The positive rational numbers form a set
is-set-ℚ⁺ : is-set ℚ⁺ is-set-ℚ⁺ = is-set-type-subtype is-positive-prop-ℚ is-set-ℚ
The rational image of a positive integer is positive
abstract is-positive-rational-ℤ : (x : ℤ) → is-positive-ℤ x → is-positive-ℚ (rational-ℤ x) is-positive-rational-ℤ x P = P one-ℚ⁺ : ℚ⁺ one-ℚ⁺ = (one-ℚ , is-positive-int-positive-ℤ one-positive-ℤ)
The rational image of a positive integer fraction is positive
abstract is-positive-rational-fraction-ℤ : {x : fraction-ℤ} (P : is-positive-fraction-ℤ x) → is-positive-ℚ (rational-fraction-ℤ x) is-positive-rational-fraction-ℤ = is-positive-reduce-fraction-ℤ
A rational number x
is positive if and only if 0 < x
module _ (x : ℚ) where abstract le-zero-is-positive-ℚ : is-positive-ℚ x → le-ℚ zero-ℚ x le-zero-is-positive-ℚ = is-positive-eq-ℤ (inv (cross-mul-diff-zero-fraction-ℤ (fraction-ℚ x))) is-positive-le-zero-ℚ : le-ℚ zero-ℚ x → is-positive-ℚ x is-positive-le-zero-ℚ = is-positive-eq-ℤ (cross-mul-diff-zero-fraction-ℤ (fraction-ℚ x))
The difference of a rational number with a lesser rational number is positive
module _ (x y : ℚ) (H : le-ℚ x y) where is-positive-diff-le-ℚ : is-positive-ℚ (y -ℚ x) is-positive-diff-le-ℚ = is-positive-le-zero-ℚ ( y -ℚ x) ( backward-implication ( iff-translate-diff-le-zero-ℚ x y) ( H)) positive-diff-le-ℚ : ℚ⁺ positive-diff-le-ℚ = y -ℚ x , is-positive-diff-le-ℚ left-law-positive-diff-le-ℚ : (rational-ℚ⁺ positive-diff-le-ℚ) +ℚ x = y left-law-positive-diff-le-ℚ = ( associative-add-ℚ y (neg-ℚ x) x) ∙ ( inv-tr ( λ u → y +ℚ u = y) ( left-inverse-law-add-ℚ x) ( right-unit-law-add-ℚ y)) right-law-positive-diff-le-ℚ : x +ℚ (rational-ℚ⁺ positive-diff-le-ℚ) = y right-law-positive-diff-le-ℚ = commutative-add-ℚ x (y -ℚ x) ∙ left-law-positive-diff-le-ℚ
A nonzero rational number or its negative is positive
decide-is-negative-is-positive-is-nonzero-ℚ : {x : ℚ} → is-nonzero-ℚ x → is-positive-ℚ (neg-ℚ x) + is-positive-ℚ x decide-is-negative-is-positive-is-nonzero-ℚ {x} H = rec-coproduct ( inl ∘ is-positive-neg-is-negative-ℤ) ( inr) ( decide-sign-nonzero-ℤ { numerator-ℚ x} (is-nonzero-numerator-is-nonzero-ℚ x H))
A rational and its negative are not both positive
abstract not-is-negative-is-positive-ℚ : (x : ℚ) → ¬ (is-positive-ℚ (neg-ℚ x) × is-positive-ℚ x) not-is-negative-is-positive-ℚ x (N , P) = is-not-negative-and-positive-ℤ ( numerator-ℚ x) ( ( is-negative-eq-ℤ (neg-neg-ℤ (numerator-ℚ x)) (is-negative-neg-is-positive-ℤ {numerator-ℚ (neg-ℚ x)} N)) , ( P))
Positive rational numbers are nonzero
abstract is-nonzero-is-positive-ℚ : {x : ℚ} → is-positive-ℚ x → is-nonzero-ℚ x is-nonzero-is-positive-ℚ {x} H = is-nonzero-is-nonzero-numerator-ℚ x ( is-nonzero-is-positive-ℤ { numerator-ℚ x} ( H)) nonzero-ℚ⁺ : positive-ℚ → nonzero-ℚ nonzero-ℚ⁺ (x , P) = (x , is-nonzero-is-positive-ℚ P)
The sum of two positive rational numbers is positive
abstract is-positive-add-ℚ : {x y : ℚ} → is-positive-ℚ x → is-positive-ℚ y → is-positive-ℚ (x +ℚ y) is-positive-add-ℚ {x} {y} P Q = is-positive-rational-fraction-ℤ ( is-positive-add-fraction-ℤ { fraction-ℚ x} { fraction-ℚ y} ( P) ( Q))
The positive rational numbers are an additive subsemigroup of the rational numbers
subsemigroup-add-ℚ⁺ : Subsemigroup lzero semigroup-add-ℚ pr1 subsemigroup-add-ℚ⁺ = is-positive-prop-ℚ pr2 subsemigroup-add-ℚ⁺ {x} {y} = is-positive-add-ℚ {x} {y} semigroup-add-ℚ⁺ : Semigroup lzero semigroup-add-ℚ⁺ = semigroup-Subsemigroup semigroup-add-ℚ subsemigroup-add-ℚ⁺
The positive sum of two positive rational numbers
add-ℚ⁺ : ℚ⁺ → ℚ⁺ → ℚ⁺ add-ℚ⁺ = mul-Subsemigroup semigroup-add-ℚ subsemigroup-add-ℚ⁺ infixl 35 _+ℚ⁺_ _+ℚ⁺_ = add-ℚ⁺
The positive sum of positive rational numbers is associative
associative-add-ℚ⁺ : (x y z : ℚ⁺) → ((x +ℚ⁺ y) +ℚ⁺ z) = (x +ℚ⁺ (y +ℚ⁺ z)) associative-add-ℚ⁺ = associative-mul-Subsemigroup semigroup-add-ℚ subsemigroup-add-ℚ⁺
The positive sum of positive rational numbers is commutative
commutative-add-ℚ⁺ : (x y : ℚ⁺) → (x +ℚ⁺ y) = (y +ℚ⁺ x) commutative-add-ℚ⁺ x y = eq-ℚ⁺ (commutative-add-ℚ (rational-ℚ⁺ x) (rational-ℚ⁺ y))
The additive interchange law on positive rational numbers
interchange-law-add-add-ℚ⁺ : (x y u v : ℚ⁺) → (x +ℚ⁺ y) +ℚ⁺ (u +ℚ⁺ v) = (x +ℚ⁺ u) +ℚ⁺ (y +ℚ⁺ v) interchange-law-add-add-ℚ⁺ x y u v = eq-ℚ⁺ ( interchange-law-add-add-ℚ ( rational-ℚ⁺ x) ( rational-ℚ⁺ y) ( rational-ℚ⁺ u) ( rational-ℚ⁺ v))
The product of two positive rational numbers is positive
abstract is-positive-mul-ℚ : {x y : ℚ} → is-positive-ℚ x → is-positive-ℚ y → is-positive-ℚ (x *ℚ y) is-positive-mul-ℚ {x} {y} P Q = is-positive-rational-fraction-ℤ ( is-positive-mul-fraction-ℤ { fraction-ℚ x} { fraction-ℚ y} ( P) ( Q))
The positive rational numbers are a multiplicative submonoid of the rational numbers
is-submonoid-mul-ℚ⁺ : is-submonoid-subset-Monoid monoid-mul-ℚ is-positive-prop-ℚ pr1 is-submonoid-mul-ℚ⁺ = is-positive-rational-ℚ⁺ one-ℚ⁺ pr2 is-submonoid-mul-ℚ⁺ x y = is-positive-mul-ℚ {x} {y} submonoid-mul-ℚ⁺ : Submonoid lzero monoid-mul-ℚ pr1 submonoid-mul-ℚ⁺ = is-positive-prop-ℚ pr2 submonoid-mul-ℚ⁺ = is-submonoid-mul-ℚ⁺ monoid-mul-ℚ⁺ : Monoid lzero monoid-mul-ℚ⁺ = monoid-Submonoid monoid-mul-ℚ submonoid-mul-ℚ⁺ commutative-monoid-mul-ℚ⁺ : Commutative-Monoid lzero commutative-monoid-mul-ℚ⁺ = commutative-monoid-Commutative-Submonoid commutative-monoid-mul-ℚ submonoid-mul-ℚ⁺
The positive product of two positive rational numbers
mul-ℚ⁺ : ℚ⁺ → ℚ⁺ → ℚ⁺ mul-ℚ⁺ = mul-Submonoid monoid-mul-ℚ submonoid-mul-ℚ⁺ infixl 40 _*ℚ⁺_ _*ℚ⁺_ = mul-ℚ⁺
The positive product of positive rational numbers is associative
associative-mul-ℚ⁺ : (x y z : ℚ⁺) → ((x *ℚ⁺ y) *ℚ⁺ z) = (x *ℚ⁺ (y *ℚ⁺ z)) associative-mul-ℚ⁺ = associative-mul-Submonoid monoid-mul-ℚ submonoid-mul-ℚ⁺
The positive product of positive rational numbers is commutative
commutative-mul-ℚ⁺ : (x y : ℚ⁺) → (x *ℚ⁺ y) = (y *ℚ⁺ x) commutative-mul-ℚ⁺ = commutative-mul-Commutative-Submonoid commutative-monoid-mul-ℚ submonoid-mul-ℚ⁺
Multiplicative unit laws for positive multiplication of positive rational numbers
left-unit-law-mul-ℚ⁺ : (x : ℚ⁺) → one-ℚ⁺ *ℚ⁺ x = x left-unit-law-mul-ℚ⁺ = left-unit-law-mul-Submonoid monoid-mul-ℚ submonoid-mul-ℚ⁺ right-unit-law-mul-ℚ⁺ : (x : ℚ⁺) → x *ℚ⁺ one-ℚ⁺ = x right-unit-law-mul-ℚ⁺ = right-unit-law-mul-Submonoid monoid-mul-ℚ submonoid-mul-ℚ⁺
The positive rational numbers are invertible elements of the multiplicative monoid of rational numbers
module _ (x : ℚ) (P : is-positive-ℚ x) where inv-is-positive-ℚ : ℚ pr1 inv-is-positive-ℚ = inv-is-positive-fraction-ℤ (fraction-ℚ x) P pr2 inv-is-positive-ℚ = is-reduced-inv-is-positive-fraction-ℤ ( fraction-ℚ x) ( P) ( is-reduced-fraction-ℚ x) abstract left-inverse-law-mul-is-positive-ℚ : inv-is-positive-ℚ *ℚ x = one-ℚ left-inverse-law-mul-is-positive-ℚ = ( eq-ℚ-sim-fraction-ℤ ( mul-fraction-ℤ ( inv-is-positive-fraction-ℤ (fraction-ℚ x) P) ( fraction-ℚ x)) ( one-fraction-ℤ) ( left-inverse-law-mul-is-positive-fraction-ℤ (fraction-ℚ x) P)) ∙ ( is-retraction-rational-fraction-ℚ one-ℚ) right-inverse-law-mul-is-positive-ℚ : x *ℚ inv-is-positive-ℚ = one-ℚ right-inverse-law-mul-is-positive-ℚ = (commutative-mul-ℚ x _) ∙ (left-inverse-law-mul-is-positive-ℚ) is-mul-invertible-is-positive-ℚ : is-invertible-element-Monoid monoid-mul-ℚ x pr1 is-mul-invertible-is-positive-ℚ = inv-is-positive-ℚ pr1 (pr2 is-mul-invertible-is-positive-ℚ) = right-inverse-law-mul-is-positive-ℚ pr2 (pr2 is-mul-invertible-is-positive-ℚ) = left-inverse-law-mul-is-positive-ℚ
The strict inequality on positive rational numbers
le-prop-ℚ⁺ : ℚ⁺ → ℚ⁺ → Prop lzero le-prop-ℚ⁺ x y = le-ℚ-Prop (rational-ℚ⁺ x) (rational-ℚ⁺ y) le-ℚ⁺ : ℚ⁺ → ℚ⁺ → UU lzero le-ℚ⁺ x y = type-Prop (le-prop-ℚ⁺ x y) is-prop-le-ℚ⁺ : (x y : ℚ⁺) → is-prop (le-ℚ⁺ x y) is-prop-le-ℚ⁺ x y = is-prop-type-Prop (le-prop-ℚ⁺ x y)
The sum of two positive rational numbers is greater than each of them
module _ (x y : ℚ⁺) where le-left-add-ℚ⁺ : le-ℚ⁺ x (x +ℚ⁺ y) le-left-add-ℚ⁺ = tr ( λ z → le-ℚ z ((rational-ℚ⁺ x) +ℚ (rational-ℚ⁺ y))) ( right-unit-law-add-ℚ (rational-ℚ⁺ x)) ( preserves-le-right-add-ℚ ( rational-ℚ⁺ x) ( zero-ℚ) ( rational-ℚ⁺ y) ( le-zero-is-positive-ℚ ( rational-ℚ⁺ y) ( is-positive-rational-ℚ⁺ y))) le-right-add-ℚ⁺ : le-ℚ⁺ y (x +ℚ⁺ y) le-right-add-ℚ⁺ = tr ( λ z → le-ℚ z ((rational-ℚ⁺ x) +ℚ (rational-ℚ⁺ y))) ( left-unit-law-add-ℚ (rational-ℚ⁺ y)) ( preserves-le-left-add-ℚ ( rational-ℚ⁺ y) ( zero-ℚ) ( rational-ℚ⁺ x) ( le-zero-is-positive-ℚ ( rational-ℚ⁺ x) ( is-positive-rational-ℚ⁺ x)))
The positive difference of strictly inequal positive rational numbers
module _ (x y : ℚ⁺) (H : le-ℚ⁺ x y) where le-diff-ℚ⁺ : ℚ⁺ pr1 le-diff-ℚ⁺ = (rational-ℚ⁺ y) -ℚ (rational-ℚ⁺ x) pr2 le-diff-ℚ⁺ = is-positive-le-zero-ℚ ( (rational-ℚ⁺ y) -ℚ (rational-ℚ⁺ x)) ( backward-implication ( iff-translate-diff-le-zero-ℚ ( rational-ℚ⁺ x) ( rational-ℚ⁺ y)) ( ( H))) left-diff-law-add-ℚ⁺ : le-diff-ℚ⁺ +ℚ⁺ x = y left-diff-law-add-ℚ⁺ = eq-ℚ⁺ ( ( associative-add-ℚ ( rational-ℚ⁺ y) ( neg-ℚ (rational-ℚ⁺ x)) ( rational-ℚ⁺ x)) ∙ ( ( ap ( (rational-ℚ⁺ y) +ℚ_) ( left-inverse-law-add-ℚ (rational-ℚ⁺ x))) ∙ ( right-unit-law-add-ℚ (rational-ℚ⁺ y)))) right-diff-law-add-ℚ⁺ : x +ℚ⁺ le-diff-ℚ⁺ = y right-diff-law-add-ℚ⁺ = ( eq-ℚ⁺ ( commutative-add-ℚ ( rational-ℚ⁺ x) ( rational-ℚ⁺ le-diff-ℚ⁺))) ∙ ( left-diff-law-add-ℚ⁺)
The positive mediant between zero and a positive rational number
mediant-zero-ℚ⁺ : ℚ⁺ → ℚ⁺ mediant-zero-ℚ⁺ x = ( mediant-ℚ zero-ℚ (rational-ℚ⁺ x) , is-positive-le-zero-ℚ ( mediant-ℚ zero-ℚ (rational-ℚ⁺ x)) ( le-left-mediant-ℚ ( zero-ℚ) ( rational-ℚ⁺ x) ( le-zero-is-positive-ℚ (rational-ℚ⁺ x) (is-positive-rational-ℚ⁺ x)))) le-mediant-zero-ℚ⁺ : (x : ℚ⁺) → le-ℚ⁺ (mediant-zero-ℚ⁺ x) x le-mediant-zero-ℚ⁺ x = le-right-mediant-ℚ ( zero-ℚ) ( rational-ℚ⁺ x) ( le-zero-is-positive-ℚ (rational-ℚ⁺ x) (is-positive-rational-ℚ⁺ x))
Any positive rational number is the sum of two positive rational numbers
module _ (x : ℚ⁺) where left-summand-split-ℚ⁺ : ℚ⁺ left-summand-split-ℚ⁺ = mediant-zero-ℚ⁺ x right-summand-split-ℚ⁺ : ℚ⁺ right-summand-split-ℚ⁺ = le-diff-ℚ⁺ (mediant-zero-ℚ⁺ x) x (le-mediant-zero-ℚ⁺ x) eq-add-split-ℚ⁺ : left-summand-split-ℚ⁺ +ℚ⁺ right-summand-split-ℚ⁺ = x eq-add-split-ℚ⁺ = right-diff-law-add-ℚ⁺ (mediant-zero-ℚ⁺ x) x (le-mediant-zero-ℚ⁺ x) split-ℚ⁺ : Σ ℚ⁺ (λ u → Σ ℚ⁺ (λ v → u +ℚ⁺ v = x)) split-ℚ⁺ = left-summand-split-ℚ⁺ , right-summand-split-ℚ⁺ , eq-add-split-ℚ⁺
Any two positive rational numbers have a positive rational number strictly less than both
module _ (x y : ℚ⁺) where strict-min-law-ℚ⁺ : Σ ℚ⁺ (λ z → (le-ℚ⁺ z x) × (le-ℚ⁺ z y)) strict-min-law-ℚ⁺ = rec-coproduct ( λ I → ( mediant-zero-ℚ⁺ x) , ( le-mediant-zero-ℚ⁺ x) , ( transitive-le-ℚ ( mediant-ℚ zero-ℚ (rational-ℚ⁺ x)) ( rational-ℚ⁺ x) ( rational-ℚ⁺ y) ( I) ( le-mediant-zero-ℚ⁺ x))) ( λ I → ( mediant-zero-ℚ⁺ y) , ( concatenate-le-leq-ℚ ( mediant-ℚ zero-ℚ (rational-ℚ⁺ y)) ( rational-ℚ⁺ y) ( rational-ℚ⁺ x) ( le-mediant-zero-ℚ⁺ y) ( I)) , ( le-mediant-zero-ℚ⁺ y)) ( decide-le-leq-ℚ (rational-ℚ⁺ x) (rational-ℚ⁺ y)) strict-min-ℚ⁺ : ℚ⁺ strict-min-ℚ⁺ = pr1 strict-min-law-ℚ⁺ le-left-min-ℚ⁺ : le-ℚ⁺ strict-min-ℚ⁺ x le-left-min-ℚ⁺ = pr1 (pr2 strict-min-law-ℚ⁺) le-right-min-ℚ⁺ : le-ℚ⁺ strict-min-ℚ⁺ y le-right-min-ℚ⁺ = pr2 (pr2 strict-min-law-ℚ⁺)
Addition with a positive rational number is an increasing map
le-left-add-rational-ℚ⁺ : (x : ℚ) (d : ℚ⁺) → le-ℚ x ((rational-ℚ⁺ d) +ℚ x) le-left-add-rational-ℚ⁺ x d = concatenate-leq-le-ℚ ( x) ( zero-ℚ +ℚ x) ( (rational-ℚ⁺ d) +ℚ x) ( inv-tr (leq-ℚ x) (left-unit-law-add-ℚ x) (refl-leq-ℚ x)) ( preserves-le-left-add-ℚ ( x) ( zero-ℚ) ( rational-ℚ⁺ d) ( le-zero-is-positive-ℚ ( rational-ℚ⁺ d) ( is-positive-rational-ℚ⁺ d))) le-right-add-rational-ℚ⁺ : (x : ℚ) (d : ℚ⁺) → le-ℚ x (x +ℚ (rational-ℚ⁺ d)) le-right-add-rational-ℚ⁺ x d = inv-tr ( le-ℚ x) ( commutative-add-ℚ x (rational-ℚ⁺ d)) ( le-left-add-rational-ℚ⁺ x d)
Characterization of inequality on the rational numbers by the additive action of ℚ⁺
For any x y : ℚ
, the following conditions are equivalent:
x ≤ y
∀ (δ : ℚ⁺) → x < y + δ
∀ (δ : ℚ⁺) → x ≤ y + δ
module _ (x y : ℚ) where le-add-positive-leq-ℚ : (I : leq-ℚ x y) (d : ℚ⁺) → le-ℚ x (y +ℚ (rational-ℚ⁺ d)) le-add-positive-leq-ℚ I d = concatenate-leq-le-ℚ ( x) ( y) ( y +ℚ (rational-ℚ⁺ d)) ( I) ( le-right-add-rational-ℚ⁺ y d) leq-add-positive-le-add-positive-ℚ : ((d : ℚ⁺) → le-ℚ x (y +ℚ (rational-ℚ⁺ d))) → ((d : ℚ⁺) → leq-ℚ x (y +ℚ (rational-ℚ⁺ d))) leq-add-positive-le-add-positive-ℚ H d = leq-le-ℚ { x} { y +ℚ (rational-ℚ⁺ d)} (H d) leq-leq-add-positive-ℚ : ((d : ℚ⁺) → leq-ℚ x (y +ℚ (rational-ℚ⁺ d))) → leq-ℚ x y leq-leq-add-positive-ℚ H = rec-coproduct ( λ I → ex-falso ( not-leq-le-ℚ ( mediant-ℚ y x) ( x) ( le-right-mediant-ℚ y x I) ( tr ( leq-ℚ x) ( right-law-positive-diff-le-ℚ ( y) ( mediant-ℚ y x) ( le-left-mediant-ℚ y x I)) ( H ( positive-diff-le-ℚ ( y) ( mediant-ℚ y x) ( le-left-mediant-ℚ y x I)))))) ( id) ( decide-le-leq-ℚ y x) equiv-leq-le-add-positive-ℚ : leq-ℚ x y ≃ ((d : ℚ⁺) → le-ℚ x (y +ℚ (rational-ℚ⁺ d))) equiv-leq-le-add-positive-ℚ = equiv-iff ( leq-ℚ-Prop x y) ( Π-Prop ℚ⁺ (λ d → le-ℚ-Prop x (y +ℚ (rational-ℚ⁺ d)))) ( le-add-positive-leq-ℚ) ( leq-leq-add-positive-ℚ ∘ leq-add-positive-le-add-positive-ℚ) equiv-leq-leq-add-positive-ℚ : leq-ℚ x y ≃ ((d : ℚ⁺) → leq-ℚ x (y +ℚ (rational-ℚ⁺ d))) equiv-leq-leq-add-positive-ℚ = equiv-iff ( leq-ℚ-Prop x y) ( Π-Prop ℚ⁺ (λ d → leq-ℚ-Prop x (y +ℚ (rational-ℚ⁺ d)))) ( leq-add-positive-le-add-positive-ℚ ∘ le-add-positive-leq-ℚ) ( leq-leq-add-positive-ℚ)
module _ (x y : ℚ) (d : ℚ⁺) where le-le-add-positive-leq-add-positive-ℚ : (L : leq-ℚ y (x +ℚ (rational-ℚ⁺ d))) (r : ℚ) (I : le-ℚ (r +ℚ rational-ℚ⁺ d) y) → le-ℚ r x le-le-add-positive-leq-add-positive-ℚ L r I = reflects-le-left-add-ℚ ( rational-ℚ⁺ d) ( r) ( x) ( concatenate-le-leq-ℚ ( r +ℚ rational-ℚ⁺ d) ( y) ( x +ℚ rational-ℚ⁺ d) ( I) ( L)) leq-add-positive-le-le-add-positive-ℚ : ((r : ℚ) → le-ℚ (r +ℚ rational-ℚ⁺ d) y → le-ℚ r x) → leq-ℚ y (x +ℚ rational-ℚ⁺ d) leq-add-positive-le-le-add-positive-ℚ L = rec-coproduct ( ex-falso ∘ (irreflexive-le-ℚ x) ∘ L x) ( id) ( decide-le-leq-ℚ (x +ℚ rational-ℚ⁺ d) y)
Recent changes
- 2024-09-28. malarbol and Fredrik Bakke. Metric spaces (#1162).
- 2024-04-25. malarbol and Fredrik Bakke. The discrete field of rational numbers (#1111).