The standard Euclidean Hilbert spaces
Content created by Louis Wasserman.
Created on 2026-01-09.
Last modified on 2026-01-09.
module functional-analysis.standard-euclidean-hilbert-spaces where
Imports
open import elementary-number-theory.natural-numbers open import foundation.dependent-pair-types open import foundation.universe-levels open import functional-analysis.real-banach-spaces open import functional-analysis.real-hilbert-spaces open import linear-algebra.standard-euclidean-inner-product-spaces open import metric-spaces.complete-metric-spaces open import metric-spaces.uniform-homeomorphisms-metric-spaces open import real-numbers.metric-space-of-functions-into-real-numbers open import univalent-combinatorics.standard-finite-types
Idea
The
standard Euclidean inner product space
ℝⁿ is a Hilbert space (and
therefore a Banach space).
Definition
abstract is-complete-euclidean-metric-space-ℝ-Fin : (n : ℕ) (l : Level) → is-complete-Metric-Space (euclidean-metric-space-ℝ-Fin n l) is-complete-euclidean-metric-space-ℝ-Fin n l = is-complete-metric-space-uniform-homeo-Metric-Space ( function-into-ℝ-Metric-Space (Fin n) l) ( euclidean-metric-space-ℝ-Fin n l) ( uniform-homeo-id-product-euclidean-metric-space-ℝ-Fin ( n) ( l)) ( is-complete-function-into-ℝ-Metric-Space (Fin n) l) euclidean-hilbert-space-ℝ-Fin : (n : ℕ) (l : Level) → ℝ-Hilbert-Space l (lsuc l) euclidean-hilbert-space-ℝ-Fin n l = ( inner-product-space-ℝ-Fin n l , is-complete-euclidean-metric-space-ℝ-Fin n l) euclidean-banach-space-ℝ-Fin : (n : ℕ) (l : Level) → ℝ-Banach-Space l (lsuc l) euclidean-banach-space-ℝ-Fin n l = banach-space-ℝ-Hilbert-Space (euclidean-hilbert-space-ℝ-Fin n l)
Recent changes
- 2026-01-09. Louis Wasserman. The standard Euclidean spaces ℝⁿ (#1756).