Equality on dependent function types
Content created by Egbert Rijke, Fredrik Bakke, Jonathan Prieto-Cubides, Elisabeth Stenholm and Vojtěch Štěpančík.
Created on 2022-01-31.
Last modified on 2024-03-14.
module foundation.equality-dependent-function-types where
Imports
open import foundation.dependent-pair-types open import foundation.fundamental-theorem-of-identity-types open import foundation.implicit-function-types open import foundation.universe-levels open import foundation-core.contractible-types open import foundation-core.equivalences open import foundation-core.functoriality-dependent-pair-types open import foundation-core.identity-types open import foundation-core.torsorial-type-families open import foundation-core.type-theoretic-principle-of-choice
Idea
Given a family of types B
over A
, if we can characterize the
identity types of each B x
, then we can
characterize the identity types of (x : A) → B x
.
Properties
Torsoriality
module _ {l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} {C : (x : A) → B x → UU l3} (is-torsorial-C : (x : A) → is-torsorial (C x)) where is-torsorial-Eq-Π : is-torsorial (λ g → (x : A) → C x (g x)) is-torsorial-Eq-Π = is-contr-equiv' ( (x : A) → Σ (B x) (C x)) ( distributive-Π-Σ) ( is-contr-Π is-torsorial-C) is-torsorial-Eq-implicit-Π : is-torsorial (λ g → {x : A} → C x (g {x})) is-torsorial-Eq-implicit-Π = is-contr-equiv ( Σ ((x : A) → B x) (λ g → (x : A) → C x (g x))) ( equiv-Σ ( λ g → (x : A) → C x (g x)) ( equiv-explicit-implicit-Π) ( λ _ → equiv-explicit-implicit-Π)) ( is-torsorial-Eq-Π)
Extensionality
module _ {l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} (f : (x : A) → B x) (Eq-B : (x : A) → B x → UU l3) where map-extensionality-Π : ( (x : A) (y : B x) → (f x = y) ≃ Eq-B x y) → ( g : (x : A) → B x) → f = g → ((x : A) → Eq-B x (g x)) map-extensionality-Π e .f refl x = map-equiv (e x (f x)) refl abstract is-equiv-map-extensionality-Π : (e : (x : A) (y : B x) → (f x = y) ≃ Eq-B x y) → (g : (x : A) → B x) → is-equiv (map-extensionality-Π e g) is-equiv-map-extensionality-Π e = fundamental-theorem-id ( is-torsorial-Eq-Π ( λ x → fundamental-theorem-id' ( λ y → map-equiv (e x y)) ( λ y → is-equiv-map-equiv (e x y)))) ( map-extensionality-Π e) extensionality-Π : ( (x : A) (y : B x) → (f x = y) ≃ Eq-B x y) → ( g : (x : A) → B x) → (f = g) ≃ ((x : A) → Eq-B x (g x)) pr1 (extensionality-Π e g) = map-extensionality-Π e g pr2 (extensionality-Π e g) = is-equiv-map-extensionality-Π e g
See also
- Equality proofs in the fiber of a map are characterized in
foundation.equality-fibers-of-maps
. - Equality proofs in cartesian product types are characterized in
foundation.equality-cartesian-product-types
. - Equality proofs in dependent pair types are characterized in
foundation.equality-dependent-pair-types
. - Function extensionality is postulated in
foundation.function-extensionality
.
Recent changes
- 2024-03-14. Egbert Rijke. Move torsoriality of the identity type to
foundation-core.torsorial-type-families
(#1065). - 2024-03-01. Fredrik Bakke. chore: Fix markdown list formatting (#1047).
- 2024-01-11. Fredrik Bakke. Make type family implicit for
is-torsorial-Eq-structure
andis-torsorial-Eq-Π
(#995). - 2023-11-24. Egbert Rijke. Refactor precomposition (#937).
- 2023-11-01. Fredrik Bakke. Fun with functors (#886).