Types separated at maps
Content created by Fredrik Bakke.
Created on 2024-11-19.
Last modified on 2024-11-19.
module orthogonal-factorization-systems.types-separated-at-maps where
Imports
open import foundation.identity-types open import foundation.universe-levels open import orthogonal-factorization-systems.types-local-at-maps
Idea
A type A
is said to be separated with respect to a map f
, or
f
-separated, if its identity types
are f
-local.
Definition
module _ {l1 l2 l3 : Level} {X : UU l1} {Y : UU l2} (f : X → Y) where is-map-separated-family : (X → UU l3) → UU (l1 ⊔ l2 ⊔ l3) is-map-separated-family A = (x : X) (y z : A x) → is-local f (y = z) is-map-separated : UU l3 → UU (l1 ⊔ l2 ⊔ l3) is-map-separated A = is-map-separated-family (λ _ → A)
References
- [Rij19]
- Egbert Rijke. Classifying Types. PhD thesis, Carnegie Mellon University, 06 2019. arXiv:1906.09435.
Recent changes
- 2024-11-19. Fredrik Bakke. Renamings and rewordings OFS (#1188).