Inequality on the rational numbers

Content created by Egbert Rijke, Fredrik Bakke, malarbol and Fernando Chu.

Created on 2023-04-08.
Last modified on 2024-03-28.

module elementary-number-theory.inequality-rational-numbers where
Imports
open import elementary-number-theory.cross-multiplication-difference-integer-fractions
open import elementary-number-theory.difference-integers
open import elementary-number-theory.inequality-integer-fractions
open import elementary-number-theory.inequality-integers
open import elementary-number-theory.integer-fractions
open import elementary-number-theory.integers
open import elementary-number-theory.multiplication-integers
open import elementary-number-theory.nonnegative-integers
open import elementary-number-theory.nonpositive-integers
open import elementary-number-theory.positive-and-negative-integers
open import elementary-number-theory.positive-integers
open import elementary-number-theory.rational-numbers

open import foundation.cartesian-product-types
open import foundation.coproduct-types
open import foundation.decidable-propositions
open import foundation.dependent-pair-types
open import foundation.function-types
open import foundation.functoriality-coproduct-types
open import foundation.identity-types
open import foundation.negation
open import foundation.propositions
open import foundation.universe-levels

open import order-theory.posets
open import order-theory.preorders

Idea

The standard ordering on the rational numbers is inherited from the standard ordering on integer fractions: the rational number m / n is less than or equal to m' / n' if the integer product m * n' is less than or equal to m' * n.

Definition

Inequality on the rational numbers

leq-ℚ-Prop :     Prop lzero
leq-ℚ-Prop (x , px) (y , py) = leq-fraction-ℤ-Prop x y

leq-ℚ :     UU lzero
leq-ℚ x y = type-Prop (leq-ℚ-Prop x y)

is-prop-leq-ℚ : (x y : )  is-prop (leq-ℚ x y)
is-prop-leq-ℚ x y = is-prop-type-Prop (leq-ℚ-Prop x y)

infix 30 _≤-ℚ_
_≤-ℚ_ = leq-ℚ

Properties

Inequality on the rational numbers is decidable

is-decidable-leq-ℚ : (x y : )  (leq-ℚ x y) + ¬ (leq-ℚ x y)
is-decidable-leq-ℚ x y =
  is-decidable-leq-fraction-ℤ (fraction-ℚ x) (fraction-ℚ y)

leq-ℚ-Decidable-Prop : (x y : )  Decidable-Prop lzero
leq-ℚ-Decidable-Prop x y =
  ( leq-ℚ x y ,
    is-prop-leq-ℚ x y ,
    is-decidable-leq-ℚ x y)

Inequality on the rational numbers is reflexive

refl-leq-ℚ : (x : )  leq-ℚ x x
refl-leq-ℚ x =
  refl-leq-ℤ (numerator-ℚ x *ℤ denominator-ℚ x)

Inequality on the rational numbers is antisymmetric

antisymmetric-leq-ℚ : (x y : )  leq-ℚ x y  leq-ℚ y x  x  y
antisymmetric-leq-ℚ x y H H' =
  ( inv (in-fraction-fraction-ℚ x)) 
  ( eq-ℚ-sim-fraction-ℤ
    ( fraction-ℚ x)
    ( fraction-ℚ y)
    ( is-sim-antisymmetric-leq-fraction-ℤ
      ( fraction-ℚ x)
      ( fraction-ℚ y)
      ( H)
      ( H'))) 
  ( in-fraction-fraction-ℚ y)

Inequality on the rational numbers is linear

linear-leq-ℚ : (x y : )  (leq-ℚ x y) + (leq-ℚ y x)
linear-leq-ℚ x y =
  map-coproduct
    ( id)
    ( is-nonnegative-eq-ℤ
      (distributive-neg-diff-ℤ
        ( numerator-ℚ y *ℤ denominator-ℚ x)
        ( numerator-ℚ x *ℤ denominator-ℚ y)))
    ( decide-is-nonnegative-is-nonnegative-neg-ℤ
      { cross-mul-diff-fraction-ℤ (fraction-ℚ x) (fraction-ℚ y)})

Inequality on the rational numbers is transitive

module _
  (x y z : )
  where

  transitive-leq-ℚ : leq-ℚ y z  leq-ℚ x y  leq-ℚ x z
  transitive-leq-ℚ =
    transitive-leq-fraction-ℤ
      ( fraction-ℚ x)
      ( fraction-ℚ y)
      ( fraction-ℚ z)

The partially ordered set of rational numbers ordered by inequality

ℚ-Preorder : Preorder lzero lzero
ℚ-Preorder =
  ( , leq-ℚ-Prop , refl-leq-ℚ , transitive-leq-ℚ)

ℚ-Poset : Poset lzero lzero
ℚ-Poset = (ℚ-Preorder , antisymmetric-leq-ℚ)

See also

Recent changes