Commuting cubes of maps
Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides and Vojtěch Štěpančík.
Created on 2023-02-18.
Last modified on 2024-10-27.
module foundation.commuting-cubes-of-maps where
Imports
open import foundation.action-on-identifications-functions open import foundation.commuting-hexagons-of-identifications open import foundation.commuting-squares-of-maps open import foundation.cones-over-cospan-diagrams open import foundation.dependent-pair-types open import foundation.function-extensionality open import foundation.homotopies open import foundation.universe-levels open import foundation.whiskering-homotopies-composition open import foundation-core.function-types open import foundation-core.identity-types open import foundation-core.precomposition-functions open import foundation-core.whiskering-identifications-concatenation
Idea
We specify the type of the homotopy witnessing that a cube commutes. Imagine that the cube is presented as a lattice
A'
/ | \
/ | \
∨ ∨ ∨
B' A C'
|\ / \ /|
| \ / |
∨∨ ∨ ∨ ∨∨
B D' C
\ | /
\ | /
∨ ∨ ∨
D
with all maps pointing in the downwards direction. Presented in this way, a cube
of maps has a top face, a back-left face, a back-right face, a front-left face,
a front-right face, and a bottom face, all of which are homotopies. An element
of type coherence-cube-maps
is a homotopy filling the cube.
Definition
module _ {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) where coherence-cube-maps : (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) → UU (l4 ⊔ l1') coherence-cube-maps top back-left back-right front-left front-right bottom = (a' : A') → coherence-hexagon ( ap h (back-left a')) ( front-left (f' a')) ( ap hD (top a')) ( bottom (hA a')) ( ap k (back-right a')) ( front-right (g' a'))
Symmetries of commuting cubes
The symmetry group D₃ acts on a cube. However, the coherence filling a cube needs to be modified to show that the rotated/reflected cube again commutes. In the following definitions we provide the homotopies witnessing that the rotated/reflected cubes again commute.
Note: although in principle it ought to be enough to show this for the generators of the symmetry group D₃, in practice it is more straightforward to just do the work for each of the symmetries separately. One reason is that some of the homotopies witnessing that the faces commute will be inverted as the result of an application of a symmetry. Inverting a homotopy twice results in a new homotopy that is only homotopic to the original homotopy.
module _ {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : coherence-square-maps g' f' k' h') (back-left : coherence-square-maps f' hA hB f) (back-right : coherence-square-maps g' hA hC g) (front-left : coherence-square-maps h' hB hD h) (front-right : coherence-square-maps k' hC hD k) (bottom : coherence-square-maps g f k h) (c : coherence-cube-maps f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom) where coherence-cube-maps-rotate-120 : coherence-cube-maps hC k' k hD hA f' f hB g' g h' h ( back-left) ( inv-htpy back-right) ( inv-htpy top) ( inv-htpy bottom) ( inv-htpy front-left) ( front-right) coherence-cube-maps-rotate-120 a' = ( right-whisker-concat ( right-whisker-concat ( ap-inv k (back-right a')) ( inv (bottom (hA a')))) ( ap h (back-left a'))) ∙ ( ( hexagon-rotate-120 ( ap h (back-left a')) ( front-left (f' a')) ( ap hD (top a')) ( bottom (hA a')) ( ap k (back-right a')) ( front-right (g' a')) ( c a')) ∙ ( inv ( left-whisker-concat ( front-right (g' a')) ( right-whisker-concat ( ap-inv hD (top a')) ( inv (front-left (f' a'))))))) coherence-cube-maps-rotate-240 : coherence-cube-maps h' hB hD h g' hA hC g f' k' f k ( inv-htpy back-right) ( top) ( inv-htpy back-left) ( inv-htpy front-right) ( bottom) ( inv-htpy front-left) coherence-cube-maps-rotate-240 a' = ( left-whisker-concat _ (ap-inv k (back-right a'))) ∙ ( ( hexagon-rotate-240 ( ap h (back-left a')) ( front-left (f' a')) ( ap hD (top a')) ( bottom (hA a')) ( ap k (back-right a')) ( front-right (g' a')) ( c a')) ∙ ( inv ( left-whisker-concat ( inv (front-left (f' a'))) ( right-whisker-concat (ap-inv h (back-left a')) _)))) coherence-cube-maps-mirror-A : coherence-cube-maps g f k h g' f' k' h' hA hC hB hD ( inv-htpy top) ( back-right) ( back-left) ( front-right) ( front-left) ( inv-htpy bottom) coherence-cube-maps-mirror-A a' = ( left-whisker-concat _ (ap-inv hD (top a'))) ∙ ( hexagon-mirror-A ( ap h (back-left a')) ( front-left (f' a')) ( ap hD (top a')) ( bottom (hA a')) ( ap k (back-right a')) ( front-right (g' a')) ( c a')) coherence-cube-maps-mirror-B : coherence-cube-maps hB h' h hD hA g' g hC f' f k' k ( back-right) ( inv-htpy back-left) ( top) ( bottom) ( inv-htpy front-right) ( front-left) coherence-cube-maps-mirror-B a' = ( right-whisker-concat ( right-whisker-concat (ap-inv h (back-left a')) _) ( ap k (back-right a'))) ∙ ( hexagon-mirror-B ( ap h (back-left a')) ( front-left (f' a')) ( ap hD (top a')) ( bottom (hA a')) ( ap k (back-right a')) ( front-right (g' a')) ( c a')) coherence-cube-maps-mirror-C : coherence-cube-maps k' hC hD k f' hA hB f g' h' g h ( inv-htpy back-left) ( inv-htpy top) ( inv-htpy back-right) ( inv-htpy front-left) ( inv-htpy bottom) ( inv-htpy front-right) coherence-cube-maps-mirror-C a' = ( ap ( λ t → (t ∙ inv (front-left (f' a'))) ∙ (ap h (inv (back-left a')))) ( ap-inv hD (top a'))) ∙ ( ( left-whisker-concat _ (ap-inv h (back-left a'))) ∙ ( ( hexagon-mirror-C ( ap h (back-left a')) ( front-left (f' a')) ( ap hD (top a')) ( bottom (hA a')) ( ap k (back-right a')) ( front-right (g' a')) ( c a')) ∙ ( inv ( left-whisker-concat ( inv (front-right (g' a'))) ( right-whisker-concat (ap-inv k (back-right a')) _)))))
Rectangles in commuting cubes
module _ {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : coherence-square-maps g' f' k' h') (back-left : coherence-square-maps f' hA hB f) (back-right : coherence-square-maps g' hA hC g) (front-left : coherence-square-maps h' hB hD h) (front-right : coherence-square-maps k' hC hD k) (bottom : coherence-square-maps g f k h) where rectangle-left-cube : ((h ∘ f) ∘ hA) ~ (hD ∘ (h' ∘ f')) rectangle-left-cube = pasting-horizontal-coherence-square-maps f' h' hA hB hD f h back-left front-left rectangle-right-cube : ((k ∘ g) ∘ hA) ~ (hD ∘ (k' ∘ g')) rectangle-right-cube = pasting-horizontal-coherence-square-maps g' k' hA hC hD g k back-right front-right coherence-htpy-parallel-cone-rectangle-left-rectangle-right-cube : (c : coherence-cube-maps f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom) → coherence-htpy-parallel-cone ( bottom) ( refl-htpy' hD) ( hA , h' ∘ f' , rectangle-left-cube) ( hA , k' ∘ g' , rectangle-right-cube) ( refl-htpy' hA) ( top) coherence-htpy-parallel-cone-rectangle-left-rectangle-right-cube c = ( λ a' → left-whisker-concat (rectangle-left-cube a') right-unit) ∙h ( c) rectangle-top-front-left-cube : ((h ∘ hB) ∘ f') ~ ((hD ∘ k') ∘ g') rectangle-top-front-left-cube = ( front-left ·r f') ∙h (hD ·l top) rectangle-back-right-bottom-cube : ((h ∘ f) ∘ hA) ~ ((k ∘ hC) ∘ g') rectangle-back-right-bottom-cube = ( bottom ·r hA) ∙h (k ·l back-right) rectangle-top-front-right-cube : ((hD ∘ h') ∘ f') ~ ((k ∘ hC) ∘ g') rectangle-top-front-right-cube = (hD ·l top) ∙h (inv-htpy (front-right) ·r g') rectangle-back-left-bottom-cube : ((h ∘ hB) ∘ f') ~ ((k ∘ g) ∘ hA) rectangle-back-left-bottom-cube = (h ·l (inv-htpy back-left)) ∙h (bottom ·r hA)
In analogy to the coherence
coherence-htpy-parallel-cone-rectangle-left-rectangle-right-cube
we also
expect to be able to construct a coherence
coherence-htpy-parallel-cone-rectangle-top-fl-rectangle-br-bot-cube :
(c : coherence-cube-maps f g h k f' g' h' k' hA hB hC hD
top back-left back-right front-left front-right bottom) →
coherence-htpy-parallel-cone
( inv-htpy front-right)
( refl-htpy' h)
( g' , hB ∘ f' , inv-htpy (rectangle-top-front-left-cube))
( g' , f ∘ hA , inv-htpy (rectangle-back-right-bottom-cube))
( refl-htpy' g')
( inv-htpy back-left)
Any coherence of commuting cubes induces a coherence of parallel cones
module _ {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : coherence-square-maps g' f' k' h') (back-left : coherence-square-maps f' hA hB f) (back-right : coherence-square-maps g' hA hC g) (front-left : coherence-square-maps h' hB hD h) (front-right : coherence-square-maps k' hC hD k) (bottom : coherence-square-maps g f k h) where coherence-htpy-parallel-cone-coherence-cube-maps : ( c : coherence-cube-maps f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom) → coherence-htpy-parallel-cone ( front-left) ( refl-htpy' k) ( ( f') , ( g ∘ hA) , ( rectangle-back-left-bottom-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom)) ( ( f') , ( hC ∘ g') , ( rectangle-top-front-right-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom)) ( refl-htpy' f') ( back-right) coherence-htpy-parallel-cone-coherence-cube-maps c = ( assoc-htpy ( h ·l (inv-htpy back-left)) ( bottom ·r hA) ( (k ·l back-right) ∙h (refl-htpy' (k ∘ (hC ∘ g'))))) ∙h ( ( ap-concat-htpy' ( _) ( left-whisker-inv-htpy h back-left)) ∙h ( inv-htpy-left-transpose-htpy-concat (h ·l back-left) _ _ ( ( (inv-htpy-assoc-htpy (h ·l back-left) (front-left ·r f') _) ∙h ( ( inv-htpy-assoc-htpy ( (h ·l back-left) ∙h (front-left ·r f')) ( hD ·l top) ( (inv-htpy front-right) ·r g')) ∙h ( inv-htpy-right-transpose-htpy-concat _ (front-right ·r g') _ ( (assoc-htpy (bottom ·r hA) _ _) ∙h (inv-htpy c))))) ∙h ( ap-concat-htpy (bottom ·r hA) inv-htpy-right-unit-htpy))))
Commuting cubes of maps induce commuting cubes of precomposition maps
module _ { l1 l2 l3 l4 l1' l2' l3' l4' l5 : Level} { A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} ( f : A → B) (g : A → C) (h : B → D) (k : C → D) { A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} ( f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') ( hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) ( top : coherence-square-maps g' f' k' h') ( back-left : coherence-square-maps f' hA hB f) ( back-right : coherence-square-maps g' hA hC g) ( front-left : coherence-square-maps h' hB hD h) ( front-right : coherence-square-maps k' hC hD k) ( bottom : coherence-square-maps g f k h) where precomp-coherence-cube-maps : coherence-cube-maps f g h k f' g' h' k' hA hB hC hD ( top) ( back-left) ( back-right) ( front-left) ( front-right) ( bottom) → ( W : UU l5) → coherence-cube-maps ( precomp h' W) ( precomp k' W) ( precomp f' W) ( precomp g' W) ( precomp h W) ( precomp k W) ( precomp f W) ( precomp g W) ( precomp hD W) ( precomp hB W) ( precomp hC W) ( precomp hA W) ( precomp-coherence-square-maps g f k h bottom W) ( precomp-coherence-square-maps hB h' h hD (inv-htpy front-left) W) ( precomp-coherence-square-maps hC k' k hD (inv-htpy front-right) W) ( precomp-coherence-square-maps hA f' f hB (inv-htpy back-left) W) ( precomp-coherence-square-maps hA g' g hC (inv-htpy back-right) W) ( precomp-coherence-square-maps g' f' k' h' top W) precomp-coherence-cube-maps c W = homotopy-reasoning ( (precomp f' W) ·l precomp-front-left-inv) ∙h ( precomp-back-left-inv ·r (precomp h W)) ∙h ( (precomp hA W) ·l precomp-bottom) ~ ( precomp-front-left-inv-whisker-f') ∙h ( precomp-h-whisker-back-left-inv) ∙h ( precomp-bottom-whisker-hA) by inv-htpy ( horizontal-concat-htpy² ( horizontal-concat-htpy² ( distributive-precomp-right-whisker-comp-coherence-square-maps ( W) ( hB) ( h') ( h) ( hD) ( inv-htpy front-left) ( f')) ( distributive-precomp-left-whisker-comp-coherence-square-maps ( W) ( hA) ( f') ( f) ( hB) ( inv-htpy back-left) ( h))) ( distributive-precomp-right-whisker-comp-coherence-square-maps ( W) ( g) ( f) ( k) ( h) ( bottom) ( hA))) ~ precomp-coherence-square-maps hA ( h' ∘ f') ( k ∘ g) ( hD) ( ( inv-htpy front-left ·r f') ∙h ( h ·l inv-htpy back-left) ∙h ( bottom ·r hA)) ( W) by inv-htpy ( distributive-precomp-coherence-square-left-map-triangle-coherence-triangle-maps ( W) ( hA) ( h' ∘ f') ( k ∘ g) ( hD) ( h ·l inv-htpy back-left) ( inv-htpy front-left ·r f') ( bottom ·r hA)) ~ precomp-coherence-square-maps hA ( h' ∘ f') ( k ∘ g) ( hD) ( ( hD ·l top) ∙h ( ( inv-htpy front-right ·r g') ∙h ( k ·l inv-htpy back-right))) ( W) by ( λ x → ap ( λ square → precomp-coherence-square-maps hA (h' ∘ f') (k ∘ g) hD square W x) ( eq-htpy ( λ a' → inv-hexagon ( ap hD (top a')) ( inv (front-right (g' a'))) ( ap k (inv (back-right a'))) ( inv (front-left (f' a'))) ( ap h (inv (back-left a'))) ( bottom (hA a')) ( coherence-cube-maps-rotate-240 f g h k f' g' h' k' hA hB hC ( hD) ( top) ( back-left) ( back-right) ( front-left) ( front-right) ( bottom) ( c) ( a'))))) ~ ( precomp-hD-whisker-top) ∙h ( ( precomp-front-right-inv-whisker-g') ∙h ( precomp-k-whisker-back-right-inv)) by distributive-precomp-coherence-square-left-map-triangle-coherence-triangle-maps' ( W) ( hA) ( h' ∘ f') ( k ∘ g) ( hD) ( inv-htpy front-right ·r g') ( hD ·l top) ( k ·l inv-htpy back-right) ~ ( precomp-top ·r (precomp hD W)) ∙h ( ( (precomp g' W) ·l precomp-front-right-inv) ∙h ( precomp-back-right-inv ·r (precomp k W))) by horizontal-concat-htpy² ( distributive-precomp-left-whisker-comp-coherence-square-maps W ( g') ( f') ( k') ( h') ( top) ( hD)) ( horizontal-concat-htpy² ( distributive-precomp-right-whisker-comp-coherence-square-maps ( W) ( hC) ( k') ( k) ( hD) ( inv-htpy front-right) ( g')) ( distributive-precomp-left-whisker-comp-coherence-square-maps W hA ( g') ( g) ( hC) ( inv-htpy back-right) ( k))) where precomp-top : coherence-square-maps ( precomp k' W) ( precomp h' W) ( precomp g' W) ( precomp f' W) precomp-top = precomp-coherence-square-maps g' f' k' h' top W precomp-back-left-inv : coherence-square-maps ( precomp f W) ( precomp hB W) ( precomp hA W) ( precomp f' W) precomp-back-left-inv = precomp-coherence-square-maps hA f' f hB (inv-htpy back-left) W precomp-back-right-inv : coherence-square-maps ( precomp g W) ( precomp hC W) ( precomp hA W) ( precomp g' W) precomp-back-right-inv = precomp-coherence-square-maps hA g' g hC (inv-htpy back-right) W precomp-front-left-inv : coherence-square-maps ( precomp h W) ( precomp hD W) ( precomp hB W) ( precomp h' W) precomp-front-left-inv = precomp-coherence-square-maps hB h' h hD (inv-htpy front-left) W precomp-front-right-inv : coherence-square-maps ( precomp k W) ( precomp hD W) ( precomp hC W) ( precomp k' W) precomp-front-right-inv = precomp-coherence-square-maps hC k' k hD (inv-htpy front-right) W precomp-bottom : coherence-square-maps ( precomp k W) ( precomp h W) ( precomp g W) ( precomp f W) precomp-bottom = precomp-coherence-square-maps g f k h bottom W precomp-front-left-inv-whisker-f' : coherence-square-maps ( precomp h W) ( precomp hD W) ( precomp f' W ∘ precomp hB W) ( precomp f' W ∘ precomp h' W) precomp-front-left-inv-whisker-f' = precomp-coherence-square-maps ( hB ∘ f') ( h' ∘ f') ( h) ( hD) ( inv-htpy front-left ·r f') ( W) precomp-h-whisker-back-left-inv : coherence-square-maps ( precomp f W ∘ precomp h W) ( precomp hB W ∘ precomp h W) ( precomp hA W) ( precomp f' W) precomp-h-whisker-back-left-inv = precomp-coherence-square-maps hA f' ( h ∘ f) ( h ∘ hB) ( h ·l inv-htpy back-left) ( W) precomp-bottom-whisker-hA : coherence-square-maps ( precomp k W) ( precomp h W) ( precomp hA W ∘ precomp g W) ( precomp hA W ∘ precomp f W) precomp-bottom-whisker-hA = precomp-coherence-square-maps ( g ∘ hA) ( f ∘ hA) ( k) ( h) ( bottom ·r hA) ( W) precomp-hD-whisker-top : coherence-square-maps ( precomp k' W ∘ precomp hD W) ( precomp h' W ∘ precomp hD W) ( precomp g' W) ( precomp f' W) precomp-hD-whisker-top = precomp-coherence-square-maps g' f' ( hD ∘ k') ( hD ∘ h') ( hD ·l top) ( W) precomp-front-right-inv-whisker-g' : coherence-square-maps ( precomp k W) ( precomp hD W) ( precomp g' W ∘ precomp hC W) ( precomp g' W ∘ precomp k' W) precomp-front-right-inv-whisker-g' = precomp-coherence-square-maps ( hC ∘ g') ( k' ∘ g') ( k) ( hD) ( inv-htpy front-right ·r g') ( W) precomp-k-whisker-back-right-inv : coherence-square-maps ( precomp g W ∘ precomp k W) ( precomp hC W ∘ precomp k W) ( precomp hA W) ( precomp g' W) precomp-k-whisker-back-right-inv = precomp-coherence-square-maps hA g' ( k ∘ g) ( k ∘ hC) ( k ·l inv-htpy back-right) ( W)
Recent changes
- 2024-10-27. Fredrik Bakke. Functoriality of morphisms of arrows (#1130).
- 2024-02-19. Fredrik Bakke. Additions for coherently invertible maps (#1024).
- 2024-02-06. Egbert Rijke and Fredrik Bakke. Refactor files about identity types and homotopies (#1014).
- 2024-01-28. Egbert Rijke. Span diagrams (#1007).
- 2024-01-14. Fredrik Bakke. Exponentiating retracts of maps (#989).