Conservative functors between precategories
Content created by Fredrik Bakke.
Created on 2023-11-01.
Last modified on 2024-03-11.
module category-theory.conservative-functors-precategories where
Imports
open import category-theory.functors-precategories open import category-theory.isomorphisms-in-precategories open import category-theory.precategories open import foundation.dependent-pair-types open import foundation.iterated-dependent-product-types open import foundation.propositions open import foundation.universe-levels
Idea
A functor F : C → D
between
precategories is conservative if every
morphism that is mapped to an
isomorphism in D
is an
isomorphism in C
.
Definitions
The predicate on functors of being conservative
module _ {l1 l2 l3 l4 : Level} (C : Precategory l1 l2) (D : Precategory l3 l4) (F : functor-Precategory C D) where is-conservative-functor-Precategory : UU (l1 ⊔ l2 ⊔ l4) is-conservative-functor-Precategory = {x y : obj-Precategory C} (f : hom-Precategory C x y) → is-iso-Precategory D (hom-functor-Precategory C D F f) → is-iso-Precategory C f is-prop-is-conservative-functor-Precategory : is-prop is-conservative-functor-Precategory is-prop-is-conservative-functor-Precategory = is-prop-iterated-implicit-Π 2 ( λ x y → is-prop-iterated-Π 2 (λ f _ → is-prop-is-iso-Precategory C f)) is-conservative-prop-functor-Precategory : Prop (l1 ⊔ l2 ⊔ l4) pr1 is-conservative-prop-functor-Precategory = is-conservative-functor-Precategory pr2 is-conservative-prop-functor-Precategory = is-prop-is-conservative-functor-Precategory
The type of conservative functors
conservative-functor-Precategory : {l1 l2 l3 l4 : Level} (C : Precategory l1 l2) (D : Precategory l3 l4) → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) conservative-functor-Precategory C D = Σ ( functor-Precategory C D) ( is-conservative-functor-Precategory C D) module _ {l1 l2 l3 l4 : Level} (C : Precategory l1 l2) (D : Precategory l3 l4) (F : conservative-functor-Precategory C D) where functor-conservative-functor-Precategory : functor-Precategory C D functor-conservative-functor-Precategory = pr1 F is-conservative-conservative-functor-Precategory : is-conservative-functor-Precategory C D ( functor-conservative-functor-Precategory) is-conservative-conservative-functor-Precategory = pr2 F obj-conservative-functor-Precategory : obj-Precategory C → obj-Precategory D obj-conservative-functor-Precategory = obj-functor-Precategory C D ( functor-conservative-functor-Precategory) hom-conservative-functor-Precategory : {x y : obj-Precategory C} → hom-Precategory C x y → hom-Precategory D ( obj-conservative-functor-Precategory x) ( obj-conservative-functor-Precategory y) hom-conservative-functor-Precategory = hom-functor-Precategory C D ( functor-conservative-functor-Precategory)
See also
- Essentially injective functors
- Pseudomonic functors are conservative.
- Fully faithful functors are conservative.
External links
- Conservative Functors at 1lab
- conservative functor at Lab
- Conservative functor at Wikipedia
Recent changes
- 2024-03-11. Fredrik Bakke. Refactor category theory to use strictly involutive identity types (#1052).
- 2024-03-01. Fredrik Bakke. chore: Fix markdown list formatting (#1047).
- 2023-11-09. Fredrik Bakke. Typeset
nlab
as$n$Lab
(#911). - 2023-11-01. Fredrik Bakke. Fun with functors (#886).