1
-acyclic types
Content created by Tom de Jong and Fredrik Bakke.
Created on 2023-12-01.
Last modified on 2024-04-11.
module synthetic-homotopy-theory.1-acyclic-types where
Imports
open import foundation.0-connected-types open import foundation.binary-transport open import foundation.constant-maps open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.diagonal-maps-of-types open import foundation.equivalences open import foundation.function-extensionality open import foundation.identity-types open import foundation.inhabited-types open import foundation.injective-maps open import foundation.propositions open import foundation.set-truncations open import foundation.sets open import foundation.truncated-types open import foundation.truncation-levels open import foundation.universe-levels open import synthetic-homotopy-theory.0-acyclic-types open import synthetic-homotopy-theory.loop-spaces open import synthetic-homotopy-theory.truncated-acyclic-maps open import synthetic-homotopy-theory.truncated-acyclic-types
Idea
A type is 1
-acyclic if its
suspension is
1
-connected.
We can characterize the 1
-acyclic types as the
0
-connected types.
In one direction, our proof relies on the following group-theoretic fact: the
map of generators from a
set X
to the free group on X
is
injective. This is proved constructively in
[MRR88] by Mines, Richman and Ruitenburg, and carried out in HoTT/UF and
formalized in Agda in [BCDE21] by Bezem, Coquand, Dybjer, and Escardó.
Translated to concrete groups this means that
for every set X
, we have a pointed
1
-type pt : BG
together with an injection
gen : X → pt = pt
. (Actually, BG
is 0
-connected as well, but we don't use
this in our proof below.)
A construction on the level of concrete groups can be found in the recent preprint by David Wärn [War23].
For the time being, we haven't formalized this group-theoretic fact; instead we label it as an explicit assumption of our proof.
Definition
module _ {l : Level} (A : UU l) where is-1-acyclic-Prop : Prop l is-1-acyclic-Prop = is-truncated-acyclic-Prop (one-𝕋) A is-1-acyclic : UU l is-1-acyclic = type-Prop is-1-acyclic-Prop is-prop-is-1-acyclic : is-prop is-1-acyclic is-prop-is-1-acyclic = is-prop-type-Prop is-1-acyclic-Prop
Properties
Every 0
-connected type is 1
-acyclic
module _ {l : Level} (A : UU l) where is-1-acyclic-is-0-connected : is-0-connected A → is-1-acyclic A is-1-acyclic-is-0-connected = is-truncated-acyclic-succ-is-connected
Every 1
-acyclic type is 0
-connected
As explained at the top "Idea" section, we turn the necessary group-theoretic fact into an explicit assumption of our proof.
private record concrete-group-assumption' {l : Level} (A : UU l) : UU (lsuc l) where field BG : Truncated-Type l (one-𝕋) pt : type-Truncated-Type BG gen : A → type-Ω (pair (type-Truncated-Type BG) pt) is-injective-gen : is-injective gen concrete-group-assumption : UUω concrete-group-assumption = {l : Level} (A : UU l) → concrete-group-assumption' A module _ (cga : concrete-group-assumption) where is-contr-is-1-acyclic-is-set : {l : Level} (A : UU l) → is-set A → is-1-acyclic A → is-contr A is-contr-is-1-acyclic-is-set A s ac = let open concrete-group-assumption' (cga A) in is-contr-is-inhabited-is-prop ( is-prop-all-elements-equal ( λ x y → is-injective-gen ( binary-tr ( Id) ( htpy-eq ( is-section-map-inv-equiv ( ( diagonal-exponential ( type-Ω (type-Truncated-Type BG , pt)) ( A)) , ( is-equiv-diagonal-exponential-Id-is-acyclic-Truncated-Type ( A) ( ac) ( BG) ( pt) ( pt))) ( gen)) ( x)) ( htpy-eq ( is-section-map-inv-equiv ( ( diagonal-exponential ( type-Ω (type-Truncated-Type BG , pt)) ( A)) , ( is-equiv-diagonal-exponential-Id-is-acyclic-Truncated-Type ( A) ( ac) ( BG) ( pt) ( pt))) ( gen)) ( y)) ( refl)))) ( is-inhabited-is-0-acyclic ( is-truncated-acyclic-is-truncated-acyclic-succ ac)) is-0-connected-is-1-acyclic : {l : Level} (A : UU l) → is-1-acyclic A → is-0-connected A is-0-connected-is-1-acyclic A ac = is-contr-is-1-acyclic-is-set ( type-trunc-Set A) ( is-set-type-trunc-Set) ( is-truncated-acyclic-succ-type-trunc-is-truncated-acyclic-succ A ac)
References
- [BCDE21]
- Marc Bezem, Thierry Coquand, Peter Dybjer, and Martín Escardó. Free groups in hott/uf in agda. 2021. URL: https://www.cs.bham.ac.uk/~mhe/TypeTopology/Groups.Free.html.
- [MRR88]
- Ray Mines, Fred Richman, and Wim Ruitenburg. A Course in Constructive Algebra. Universitext. Springer New York, 1988. ISBN 978-0-387-96640-3 978-1-4419-8640-5. URL: http://link.springer.com/10.1007/978-1-4419-8640-5, doi:10.1007/978-1-4419-8640-5.
- [War23]
- David Wärn. Path spaces of pushouts. E-mail, 04 2023. URL: https://dwarn.se/po-paths.pdf.
See also
Recent changes
- 2024-04-11. Fredrik Bakke. Refactor diagonals (#1096).
- 2024-03-12. Fredrik Bakke. Bibliographies (#1058).
- 2024-03-01. Fredrik Bakke. chore: Fix markdown list formatting (#1047).
- 2023-12-11. Tom de Jong. Fix urls (#980).
- 2023-12-04. Tom de Jong.
k
-acyclic maps/types closure properties (#967).