Dependent function types
Content created by Egbert Rijke.
Created on 2024-01-28.
Last modified on 2024-12-03.
module foundation.dependent-function-types where
Imports
open import foundation.dependent-pair-types open import foundation.spans-families-of-types open import foundation.terminal-spans-families-of-types open import foundation.type-arithmetic-dependent-function-types open import foundation.universal-property-dependent-function-types open import foundation.universe-levels
Idea
Consider a family B
of types over A
. A dependent function¶
that takes elements x : A
to elements of type B x
is an assignment of an
element f x : B x
for each x : A
. In Agda, dependent functions can be
written using λ
-abstraction, i.e., using the syntax
λ x → f x.
Informally, we also use the notation x ↦ f x
for the assignment of values of a
dependent function f
.
The type of dependent function (x : A) → B x
is built in to the kernel of
Agda, and doesn’t need to be introduced by us. The purpose of this file is to
record some properties of dependent function types.
Definitions
The structure of a span on a family of types on a dependent function type
module _ {l1 l2 : Level} {A : UU l1} (B : A → UU l2) where span-type-family-Π : span-type-family (l1 ⊔ l2) B pr1 span-type-family-Π = (x : A) → B x pr2 span-type-family-Π x f = f x
Properties
Dependent function types satisfy the universal property of dependent function types
module _ {l1 l2 : Level} {A : UU l1} (B : A → UU l2) where abstract universal-property-dependent-function-types-Π : universal-property-dependent-function-types (span-type-family-Π B) universal-property-dependent-function-types-Π T = is-equiv-swap-Π
Dependent function types are terminal spans on families of types
module _ {l1 l2 : Level} {A : UU l1} (B : A → UU l2) where abstract is-terminal-span-type-family-Π : is-terminal-span-type-family (span-type-family-Π B) is-terminal-span-type-family-Π = is-terminal-universal-property-dependent-function-types ( span-type-family-Π B) ( universal-property-dependent-function-types-Π B)
See also
Recent changes
- 2024-12-03. Egbert Rijke. Hofmann-Streicher universes for graphs and globular types (#1196).
- 2024-01-28. Egbert Rijke. Span diagrams (#1007).