Sums of finite sequences of elements in normed real vector spaces
Content created by Louis Wasserman.
Created on 2025-12-25.
Last modified on 2025-12-25.
module linear-algebra.sums-of-finite-sequences-of-elements-normed-real-vector-spaces where
Imports
open import elementary-number-theory.natural-numbers open import foundation.function-types open import foundation.universe-levels open import group-theory.sums-of-finite-sequences-of-elements-abelian-groups open import linear-algebra.normed-real-vector-spaces open import lists.finite-sequences open import order-theory.large-posets open import real-numbers.addition-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.inequalities-addition-and-subtraction-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.sums-of-finite-sequences-of-real-numbers open import univalent-combinatorics.standard-finite-types
Idea
The sum¶ of a finite sequence of elements of a normed vector space over the real numbers is the sum of the sequence in the abelian group of the vector space under addition.
Definition
sum-fin-sequence-type-Normed-ℝ-Vector-Space : {l1 l2 : Level} (V : Normed-ℝ-Vector-Space l1 l2) (n : ℕ) → fin-sequence (type-Normed-ℝ-Vector-Space V) n → type-Normed-ℝ-Vector-Space V sum-fin-sequence-type-Normed-ℝ-Vector-Space V = sum-fin-sequence-type-Ab (ab-Normed-ℝ-Vector-Space V)
Properties
The norm of the sum of a finite sequence is at most the sum of the norms of the terms of the sequence
module _ {l1 l2 : Level} (V : Normed-ℝ-Vector-Space l1 l2) where abstract triangle-inequality-norm-sum-fin-sequence-type-Normed-ℝ-Vector-Space : (n : ℕ) (σ : fin-sequence (type-Normed-ℝ-Vector-Space V) n) → leq-ℝ ( map-norm-Normed-ℝ-Vector-Space V ( sum-fin-sequence-type-Normed-ℝ-Vector-Space V n σ)) ( sum-fin-sequence-ℝ n (map-norm-Normed-ℝ-Vector-Space V ∘ σ)) triangle-inequality-norm-sum-fin-sequence-type-Normed-ℝ-Vector-Space 0 σ = leq-eq-ℝ (eq-zero-norm-zero-Normed-ℝ-Vector-Space V) triangle-inequality-norm-sum-fin-sequence-type-Normed-ℝ-Vector-Space (succ-ℕ n) σ = let open inequality-reasoning-Large-Poset ℝ-Large-Poset in chain-of-inequalities map-norm-Normed-ℝ-Vector-Space V ( sum-fin-sequence-type-Normed-ℝ-Vector-Space V (succ-ℕ n) σ) ≤ ( map-norm-Normed-ℝ-Vector-Space V ( sum-fin-sequence-type-Normed-ℝ-Vector-Space V ( n) ( σ ∘ inl-Fin n))) +ℝ ( map-norm-Normed-ℝ-Vector-Space V (σ (neg-one-Fin n))) by triangular-norm-Normed-ℝ-Vector-Space V _ _ ≤ sum-fin-sequence-ℝ (succ-ℕ n) (map-norm-Normed-ℝ-Vector-Space V ∘ σ) by preserves-leq-right-add-ℝ _ _ _ ( triangle-inequality-norm-sum-fin-sequence-type-Normed-ℝ-Vector-Space ( n) ( σ ∘ inl-Fin n))
Recent changes
- 2025-12-25. Louis Wasserman. The absolute convergence test in real Banach spaces (#1714).