Equivalences
Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides, maybemabeline, Julian KG, Raymond Baker, fernabnor and louismntnu.
Created on 2022-02-04.
Last modified on 2024-06-03.
module foundation-core.equivalences where
Imports
open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.universe-levels open import foundation.whiskering-homotopies-composition open import foundation-core.cartesian-product-types open import foundation-core.coherently-invertible-maps open import foundation-core.function-types open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.invertible-maps open import foundation-core.retractions open import foundation-core.sections
Idea
An equivalence is a map that has a section and a (separate) retraction. This condition is also called being biinvertible.
The condition of biinvertibility may look odd: Why not say that an equivalence
is a map that has a 2-sided inverse? The
reason is that the condition of invertibility is
structure, whereas the condition of being
biinvertible is a property. To quickly see
this: if f
is an equivalence, then it has up to
homotopy only one section, and it has up to
homotopy only one retraction.
Definition
The predicate of being an equivalence
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where is-equiv : (A → B) → UU (l1 ⊔ l2) is-equiv f = section f × retraction f
Components of a proof of equivalence
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A → B} (H : is-equiv f) where section-is-equiv : section f section-is-equiv = pr1 H retraction-is-equiv : retraction f retraction-is-equiv = pr2 H map-section-is-equiv : B → A map-section-is-equiv = map-section f section-is-equiv map-retraction-is-equiv : B → A map-retraction-is-equiv = map-retraction f retraction-is-equiv is-section-map-section-is-equiv : is-section f map-section-is-equiv is-section-map-section-is-equiv = is-section-map-section f section-is-equiv is-retraction-map-retraction-is-equiv : is-retraction f map-retraction-is-equiv is-retraction-map-retraction-is-equiv = is-retraction-map-retraction f retraction-is-equiv
Equivalences
module _ {l1 l2 : Level} (A : UU l1) (B : UU l2) where equiv : UU (l1 ⊔ l2) equiv = Σ (A → B) is-equiv infix 6 _≃_ _≃_ : {l1 l2 : Level} (A : UU l1) (B : UU l2) → UU (l1 ⊔ l2) A ≃ B = equiv A B
Components of an equivalence
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (e : A ≃ B) where map-equiv : A → B map-equiv = pr1 e is-equiv-map-equiv : is-equiv map-equiv is-equiv-map-equiv = pr2 e section-map-equiv : section map-equiv section-map-equiv = section-is-equiv is-equiv-map-equiv map-section-map-equiv : B → A map-section-map-equiv = map-section map-equiv section-map-equiv is-section-map-section-map-equiv : is-section map-equiv map-section-map-equiv is-section-map-section-map-equiv = is-section-map-section map-equiv section-map-equiv retraction-map-equiv : retraction map-equiv retraction-map-equiv = retraction-is-equiv is-equiv-map-equiv map-retraction-map-equiv : B → A map-retraction-map-equiv = map-retraction map-equiv retraction-map-equiv is-retraction-map-retraction-map-equiv : is-retraction map-equiv map-retraction-map-equiv is-retraction-map-retraction-map-equiv = is-retraction-map-retraction map-equiv retraction-map-equiv
The identity equivalence
module _ {l : Level} {A : UU l} where is-equiv-id : is-equiv (id {l} {A}) pr1 (pr1 is-equiv-id) = id pr2 (pr1 is-equiv-id) = refl-htpy pr1 (pr2 is-equiv-id) = id pr2 (pr2 is-equiv-id) = refl-htpy id-equiv : A ≃ A pr1 id-equiv = id pr2 id-equiv = is-equiv-id
Properties
A map is invertible if and only if it is an equivalence
Proof: It is clear that if a map is invertible, then it is also biinvertible, and hence an equivalence.
For the converse, suppose that f : A → B
is an equivalence with section
g : B → A
equipped with G : f ∘ g ~ id
, and retraction h : B → A
equipped
with H : h ∘ f ~ id
. We claim that the map g : B → A
is also a retraction.
To see this, we concatenate the following homotopies
H⁻¹ ·r g ·r f h ·l G ·r f H
g ∘ h ---------------> h ∘ f ∘ g ∘ f -------------> h ∘ f -----> id.
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A → B} where is-equiv-is-invertible' : is-invertible f → is-equiv f is-equiv-is-invertible' (g , H , K) = ((g , H) , (g , K)) is-equiv-is-invertible : (g : B → A) (H : f ∘ g ~ id) (K : g ∘ f ~ id) → is-equiv f is-equiv-is-invertible g H K = is-equiv-is-invertible' (g , H , K) is-retraction-map-section-is-equiv : (H : is-equiv f) → is-retraction f (map-section-is-equiv H) is-retraction-map-section-is-equiv H = ( ( inv-htpy ( ( is-retraction-map-retraction-is-equiv H) ·r ( map-section-is-equiv H ∘ f))) ∙h ( map-retraction-is-equiv H ·l is-section-map-section-is-equiv H ·r f)) ∙h ( is-retraction-map-retraction-is-equiv H) is-invertible-is-equiv : is-equiv f → is-invertible f pr1 (is-invertible-is-equiv H) = map-section-is-equiv H pr1 (pr2 (is-invertible-is-equiv H)) = is-section-map-section-is-equiv H pr2 (pr2 (is-invertible-is-equiv H)) = is-retraction-map-section-is-equiv H
Coherently invertible maps are equivalences
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A → B} where is-equiv-is-coherently-invertible : is-coherently-invertible f → is-equiv f is-equiv-is-coherently-invertible H = is-equiv-is-invertible' (is-invertible-is-coherently-invertible H) is-equiv-is-transpose-coherently-invertible : is-transpose-coherently-invertible f → is-equiv f is-equiv-is-transpose-coherently-invertible H = is-equiv-is-invertible' ( is-invertible-is-transpose-coherently-invertible H)
The following maps are not simple constructions and should not be computed with.
Therefore, we mark them as abstract
.
abstract is-coherently-invertible-is-equiv : is-equiv f → is-coherently-invertible f is-coherently-invertible-is-equiv = is-coherently-invertible-is-invertible ∘ is-invertible-is-equiv abstract is-transpose-coherently-invertible-is-equiv : is-equiv f → is-transpose-coherently-invertible f is-transpose-coherently-invertible-is-equiv = is-transpose-coherently-invertible-is-invertible ∘ is-invertible-is-equiv
Structure obtained from being coherently invertible
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A → B} (H : is-equiv f) where map-inv-is-equiv : B → A map-inv-is-equiv = pr1 (is-invertible-is-equiv H) is-section-map-inv-is-equiv : is-section f map-inv-is-equiv is-section-map-inv-is-equiv = is-section-map-inv-is-coherently-invertible-is-invertible ( is-invertible-is-equiv H) is-retraction-map-inv-is-equiv : is-retraction f map-inv-is-equiv is-retraction-map-inv-is-equiv = is-retraction-map-inv-is-coherently-invertible-is-invertible ( is-invertible-is-equiv H) coherence-map-inv-is-equiv : coherence-is-coherently-invertible f ( map-inv-is-equiv) ( is-section-map-inv-is-equiv) ( is-retraction-map-inv-is-equiv) coherence-map-inv-is-equiv = coh-is-coherently-invertible-is-invertible (is-invertible-is-equiv H) is-equiv-map-inv-is-equiv : is-equiv map-inv-is-equiv is-equiv-map-inv-is-equiv = is-equiv-is-invertible f ( is-retraction-map-inv-is-equiv) ( is-section-map-inv-is-equiv)
The inverse of an equivalence is an equivalence
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (e : A ≃ B) where map-inv-equiv : B → A map-inv-equiv = map-inv-is-equiv (is-equiv-map-equiv e) is-section-map-inv-equiv : is-section (map-equiv e) map-inv-equiv is-section-map-inv-equiv = is-section-map-inv-is-equiv (is-equiv-map-equiv e) is-retraction-map-inv-equiv : is-retraction (map-equiv e) map-inv-equiv is-retraction-map-inv-equiv = is-retraction-map-inv-is-equiv (is-equiv-map-equiv e) coherence-map-inv-equiv : coherence-is-coherently-invertible ( map-equiv e) ( map-inv-equiv) ( is-section-map-inv-equiv) ( is-retraction-map-inv-equiv) coherence-map-inv-equiv = coherence-map-inv-is-equiv (is-equiv-map-equiv e) is-equiv-map-inv-equiv : is-equiv map-inv-equiv is-equiv-map-inv-equiv = is-equiv-map-inv-is-equiv (is-equiv-map-equiv e) inv-equiv : B ≃ A pr1 inv-equiv = map-inv-equiv pr2 inv-equiv = is-equiv-map-inv-equiv
The 3-for-2 property of equivalences
The 3-for-2 property of equivalences asserts that for any commuting triangle of maps
h
A ------> B
\ /
f\ /g
\ /
∨ ∨
X,
if two of the three maps are equivalences, then so is the third.
We also record special cases of the 3-for-2 property of equivalences, where we
only assume maps g : B → X
and h : A → B
. In this special case, we set
f := g ∘ h
and the triangle commutes by refl-htpy
.
André Joyal proposed calling this property the 3-for-2 property, despite most mathematicians calling it the 2-out-of-3 property. The story goes that on the produce market is is common to advertise a discount as "3-for-2". If you buy two apples, then you get the third for free. Similarly, if you prove that two maps in a commuting triangle are equivalences, then you get the third for free.
The left map in a commuting triangle is an equivalence if the other two maps are equivalences
module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) (h : A → B) (T : f ~ g ∘ h) where abstract is-equiv-left-map-triangle : is-equiv h → is-equiv g → is-equiv f pr1 (is-equiv-left-map-triangle H G) = section-left-map-triangle f g h T ( section-is-equiv H) ( section-is-equiv G) pr2 (is-equiv-left-map-triangle H G) = retraction-left-map-triangle f g h T ( retraction-is-equiv G) ( retraction-is-equiv H)
The right map in a commuting triangle is an equivalence if the other two maps are equivalences
module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) (h : A → B) (H : f ~ g ∘ h) where abstract is-equiv-right-map-triangle : is-equiv f → is-equiv h → is-equiv g is-equiv-right-map-triangle ( section-f , retraction-f) ( (sh , is-section-sh) , retraction-h) = ( pair ( section-right-map-triangle f g h H section-f) ( retraction-left-map-triangle g f sh ( inv-htpy ( ( H ·r map-section h (sh , is-section-sh)) ∙h ( g ·l is-section-map-section h (sh , is-section-sh)))) ( retraction-f) ( h , is-section-sh)))
If the left and right maps in a commuting triangle are equivalences, then the top map is an equivalence
module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) (h : A → B) (H : f ~ g ∘ h) where section-is-equiv-top-map-triangle : is-equiv g → is-equiv f → section h section-is-equiv-top-map-triangle G F = section-left-map-triangle h ( map-retraction-is-equiv G) ( f) ( inv-htpy ( ( map-retraction g (retraction-is-equiv G) ·l H) ∙h ( is-retraction-map-retraction g (retraction-is-equiv G) ·r h))) ( section-is-equiv F) ( g , is-retraction-map-retraction-is-equiv G) map-section-is-equiv-top-map-triangle : is-equiv g → is-equiv f → B → A map-section-is-equiv-top-map-triangle G F = map-section h (section-is-equiv-top-map-triangle G F) abstract is-equiv-top-map-triangle : is-equiv g → is-equiv f → is-equiv h is-equiv-top-map-triangle ( section-g , (rg , is-retraction-rg)) ( section-f , retraction-f) = ( pair ( section-left-map-triangle h rg f ( inv-htpy ( ( map-retraction g (rg , is-retraction-rg) ·l H) ∙h ( is-retraction-map-retraction g (rg , is-retraction-rg) ·r h))) ( section-f) ( g , is-retraction-rg)) ( retraction-top-map-triangle f g h H retraction-f))
Composites of equivalences are equivalences
module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} where abstract is-equiv-comp : (g : B → X) (h : A → B) → is-equiv h → is-equiv g → is-equiv (g ∘ h) pr1 (is-equiv-comp g h (sh , rh) (sg , rg)) = section-comp g h sh sg pr2 (is-equiv-comp g h (sh , rh) (sg , rg)) = retraction-comp g h rg rh comp-equiv : B ≃ X → A ≃ B → A ≃ X pr1 (comp-equiv g h) = map-equiv g ∘ map-equiv h pr2 (comp-equiv g h) = is-equiv-comp (pr1 g) (pr1 h) (pr2 h) (pr2 g) infixr 15 _∘e_ _∘e_ : B ≃ X → A ≃ B → A ≃ X _∘e_ = comp-equiv
If a composite and its right factor are equivalences, then so is its left factor
module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} where is-equiv-left-factor : (g : B → X) (h : A → B) → is-equiv (g ∘ h) → is-equiv h → is-equiv g is-equiv-left-factor g h is-equiv-gh is-equiv-h = is-equiv-right-map-triangle (g ∘ h) g h refl-htpy is-equiv-gh is-equiv-h
If a composite and its left factor are equivalences, then so is its right factor
module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} where is-equiv-right-factor : (g : B → X) (h : A → B) → is-equiv g → is-equiv (g ∘ h) → is-equiv h is-equiv-right-factor g h is-equiv-g is-equiv-gh = is-equiv-top-map-triangle (g ∘ h) g h refl-htpy is-equiv-g is-equiv-gh
Equivalences are closed under homotopies
We show that if f ~ g
, then f
is an equivalence if and only if g
is an
equivalence. Furthermore, we show that if f
and g
are homotopic equivaleces,
then their inverses are also homotopic.
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where abstract is-equiv-htpy : {f : A → B} (g : A → B) → f ~ g → is-equiv g → is-equiv f pr1 (pr1 (is-equiv-htpy g G ((h , H) , (k , K)))) = h pr2 (pr1 (is-equiv-htpy g G ((h , H) , (k , K)))) = (G ·r h) ∙h H pr1 (pr2 (is-equiv-htpy g G ((h , H) , (k , K)))) = k pr2 (pr2 (is-equiv-htpy g G ((h , H) , (k , K)))) = (k ·l G) ∙h K is-equiv-htpy-equiv : {f : A → B} (e : A ≃ B) → f ~ map-equiv e → is-equiv f is-equiv-htpy-equiv e H = is-equiv-htpy (map-equiv e) H (is-equiv-map-equiv e) abstract is-equiv-htpy' : (f : A → B) {g : A → B} → f ~ g → is-equiv f → is-equiv g is-equiv-htpy' f H = is-equiv-htpy f (inv-htpy H) is-equiv-htpy-equiv' : (e : A ≃ B) {g : A → B} → map-equiv e ~ g → is-equiv g is-equiv-htpy-equiv' e H = is-equiv-htpy' (map-equiv e) H (is-equiv-map-equiv e) htpy-map-inv-is-equiv : {f g : A → B} (H : f ~ g) (F : is-equiv f) (G : is-equiv g) → map-inv-is-equiv F ~ map-inv-is-equiv G htpy-map-inv-is-equiv H F G = htpy-map-inv-is-invertible H ( is-invertible-is-equiv F) ( is-invertible-is-equiv G)
Any retraction of an equivalence is an equivalence
abstract is-equiv-is-retraction : {l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A → B} {g : B → A} → is-equiv f → (g ∘ f) ~ id → is-equiv g is-equiv-is-retraction {A = A} {f = f} {g = g} is-equiv-f H = is-equiv-right-map-triangle id g f (inv-htpy H) is-equiv-id is-equiv-f
Any section of an equivalence is an equivalence
abstract is-equiv-is-section : {l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A → B} {g : B → A} → is-equiv f → f ∘ g ~ id → is-equiv g is-equiv-is-section {B = B} {f = f} {g = g} is-equiv-f H = is-equiv-top-map-triangle id f g (inv-htpy H) is-equiv-f is-equiv-id
If a section of f
is an equivalence, then f
is an equivalence
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) where abstract is-equiv-is-equiv-section : (s : section f) → is-equiv (map-section f s) → is-equiv f is-equiv-is-equiv-section (g , G) S = is-equiv-is-retraction S G
If a retraction of f
is an equivalence, then f
is an equivalence
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) where abstract is-equiv-is-equiv-retraction : (r : retraction f) → is-equiv (map-retraction f r) → is-equiv f is-equiv-is-equiv-retraction (g , G) R = is-equiv-is-section R G
Any section of an equivalence is homotopic to its inverse
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (e : A ≃ B) where htpy-map-inv-equiv-section : (f : section (map-equiv e)) → map-inv-equiv e ~ map-section (map-equiv e) f htpy-map-inv-equiv-section (f , H) = (map-inv-equiv e ·l inv-htpy H) ∙h (is-retraction-map-inv-equiv e ·r f)
Any retraction of an equivalence is homotopic to its inverse
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (e : A ≃ B) where htpy-map-inv-equiv-retraction : (f : retraction (map-equiv e)) → map-inv-equiv e ~ map-retraction (map-equiv e) f htpy-map-inv-equiv-retraction (f , H) = (inv-htpy H ·r map-inv-equiv e) ∙h (f ·l is-section-map-inv-equiv e)
Equivalences in commuting squares
is-equiv-equiv : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} {f : A → B} {g : X → Y} (i : A ≃ X) (j : B ≃ Y) (H : (map-equiv j ∘ f) ~ (g ∘ map-equiv i)) → is-equiv g → is-equiv f is-equiv-equiv {f = f} {g} i j H K = is-equiv-right-factor ( map-equiv j) ( f) ( is-equiv-map-equiv j) ( is-equiv-left-map-triangle ( map-equiv j ∘ f) ( g) ( map-equiv i) ( H) ( is-equiv-map-equiv i) ( K)) is-equiv-equiv' : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} {f : A → B} {g : X → Y} (i : A ≃ X) (j : B ≃ Y) (H : (map-equiv j ∘ f) ~ (g ∘ map-equiv i)) → is-equiv f → is-equiv g is-equiv-equiv' {f = f} {g} i j H K = is-equiv-left-factor ( g) ( map-equiv i) ( is-equiv-left-map-triangle ( g ∘ map-equiv i) ( map-equiv j) ( f) ( inv-htpy H) ( K) ( is-equiv-map-equiv j)) ( is-equiv-map-equiv i)
We will assume a commuting square
h
A -----> C
| |
f | | g
∨ ∨
B -----> D
i
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : C → D) (h : A → C) (i : B → D) (H : (i ∘ f) ~ (g ∘ h)) where abstract is-equiv-top-is-equiv-left-square : is-equiv i → is-equiv f → is-equiv g → is-equiv h is-equiv-top-is-equiv-left-square Ei Ef Eg = is-equiv-top-map-triangle (i ∘ f) g h H Eg (is-equiv-comp i f Ef Ei) abstract is-equiv-top-is-equiv-bottom-square : is-equiv f → is-equiv g → is-equiv i → is-equiv h is-equiv-top-is-equiv-bottom-square Ef Eg Ei = is-equiv-top-map-triangle (i ∘ f) g h H Eg (is-equiv-comp i f Ef Ei) abstract is-equiv-bottom-is-equiv-top-square : is-equiv f → is-equiv g → is-equiv h → is-equiv i is-equiv-bottom-is-equiv-top-square Ef Eg Eh = is-equiv-left-factor i f ( is-equiv-left-map-triangle (i ∘ f) g h H Eh Eg) ( Ef) abstract is-equiv-left-is-equiv-right-square : is-equiv h → is-equiv i → is-equiv g → is-equiv f is-equiv-left-is-equiv-right-square Eh Ei Eg = is-equiv-right-factor i f Ei ( is-equiv-left-map-triangle (i ∘ f) g h H Eh Eg) abstract is-equiv-right-is-equiv-left-square : is-equiv h → is-equiv i → is-equiv f → is-equiv g is-equiv-right-is-equiv-left-square Eh Ei Ef = is-equiv-right-map-triangle (i ∘ f) g h H (is-equiv-comp i f Ef Ei) Eh
Equivalences are embeddings
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where abstract is-emb-is-equiv : {f : A → B} → is-equiv f → (x y : A) → is-equiv (ap f {x} {y}) is-emb-is-equiv H x y = is-equiv-is-invertible' ( is-invertible-ap-is-coherently-invertible ( is-coherently-invertible-is-equiv H)) equiv-ap : (e : A ≃ B) (x y : A) → (x = y) ≃ (map-equiv e x = map-equiv e y) pr1 (equiv-ap e x y) = ap (map-equiv e) pr2 (equiv-ap e x y) = is-emb-is-equiv (is-equiv-map-equiv e) x y map-inv-equiv-ap : (e : A ≃ B) (x y : A) → map-equiv e x = map-equiv e y → x = y map-inv-equiv-ap e x y = map-inv-equiv (equiv-ap e x y)
Equivalence reasoning
Equivalences can be constructed by equational reasoning in the following way:
equivalence-reasoning
X ≃ Y by equiv-1
≃ Z by equiv-2
≃ V by equiv-3
The equivalence constructed in this way is equiv-1 ∘e (equiv-2 ∘e equiv-3)
,
i.e., the equivivalence is associated fully to the right.
Note. In situations where it is important to have precise control over an
equivalence or its inverse, it is often better to avoid making use of
equivalence reasoning. For example, since many of the entries proving that a map
is an equivalence are marked as abstract
in agda-unimath, the inverse of an
equivalence often does not compute to any map that one might expect the inverse
to be. If inverses of equivalences are used in equivalence reasoning, this
results in a composed equivalence that also does not compute to any expected
underlying map.
Even if a proof by equivalence reasoning is clear to the human reader, constructing equivalences by hand by constructing maps back and forth and two homotopies witnessing that they are mutual inverses is often the most straigtforward solution that gives the best expected computational behavior of the constructed equivalence. In particular, if the underlying map or its inverse are noteworthy maps, it is good practice to define them directly rather than as underlying maps of equivalences constructed by equivalence reasoning.
infixl 1 equivalence-reasoning_ infixl 0 step-equivalence-reasoning equivalence-reasoning_ : {l1 : Level} (X : UU l1) → X ≃ X equivalence-reasoning X = id-equiv step-equivalence-reasoning : {l1 l2 l3 : Level} {X : UU l1} {Y : UU l2} → (X ≃ Y) → (Z : UU l3) → (Y ≃ Z) → (X ≃ Z) step-equivalence-reasoning e Z f = f ∘e e syntax step-equivalence-reasoning e Z f = e ≃ Z by f
See also
- For the notion of coherently invertible maps, also known as half-adjoint
equivalences, see
foundation.coherently-invertible-maps
. - For the notion of maps with contractible fibers see
foundation.contractible-maps
. - For the notion of path-split maps see
foundation.path-split-maps
. - For the notion of finitely coherent equivalence, see
[
foundation.finitely-coherent-equivalence
)(foundation.finitely-coherent-equivalence.md). - For the notion of finitely coherently invertible map, see
[
foundation.finitely-coherently-invertible-map
)(foundation.finitely-coherently-invertible-map.md). - For the notion of infinitely coherent equivalence, see
foundation.infinitely-coherent-equivalences
.
Table of files about function types, composition, and equivalences
Recent changes
- 2024-06-03. Egbert Rijke. Change equiv-comp to comp-equiv (#1151).
- 2024-04-25. Fredrik Bakke. chore: Fix arrowheads in character diagrams (#1124).
- 2024-03-20. Fredrik Bakke. Janitorial work on equivalences and embeddings (#1085).
- 2024-02-23. Egbert Rijke and maybemabeline. Infinitely and finitely coherent equivalences and infinitely and finitely coherently invertible maps (#1028).
- 2024-02-19. Fredrik Bakke. Additions for coherently invertible maps (#1024).