Reflecting maps for equivalence relations

Content created by Egbert Rijke, Fredrik Bakke, Jonathan Prieto-Cubides, Julian KG, Victor Blanchi, fernabnor and louismntnu.

Created on 2022-02-17.
Last modified on 2023-09-13.

module foundation.reflecting-maps-equivalence-relations where
Imports
open import foundation.dependent-pair-types
open import foundation.effective-maps-equivalence-relations
open import foundation.fundamental-theorem-of-identity-types
open import foundation.homotopy-induction
open import foundation.subtype-identity-principle
open import foundation.universe-levels

open import foundation-core.contractible-types
open import foundation-core.equivalence-relations
open import foundation-core.equivalences
open import foundation-core.homotopies
open import foundation-core.identity-types
open import foundation-core.propositions
open import foundation-core.sets

Idea

A map f : A → B out of a type A equipped with an equivalence relation R is said to reflect R if we have R x y → f x = f y for every x y : A.

Definitions

Maps reflecting equivalence relations

module _
  {l1 l2 : Level} {A : UU l1} (R : Equivalence-Relation l2 A)
  where

  reflects-Equivalence-Relation :
    {l3 : Level} {B : UU l3}  (A  B)  UU (l1  l2  l3)
  reflects-Equivalence-Relation f =
    {x y : A}  sim-Equivalence-Relation R x y  (f x  f y)

  reflecting-map-Equivalence-Relation : {l3 : Level}  UU l3  UU (l1  l2  l3)
  reflecting-map-Equivalence-Relation B =
    Σ (A  B) reflects-Equivalence-Relation

  map-reflecting-map-Equivalence-Relation :
    {l3 : Level} {B : UU l3}  reflecting-map-Equivalence-Relation B  A  B
  map-reflecting-map-Equivalence-Relation = pr1

  reflects-map-reflecting-map-Equivalence-Relation :
    {l3 : Level} {B : UU l3} (f : reflecting-map-Equivalence-Relation B) 
    reflects-Equivalence-Relation (map-reflecting-map-Equivalence-Relation f)
  reflects-map-reflecting-map-Equivalence-Relation = pr2

  is-prop-reflects-Equivalence-Relation :
    {l3 : Level} (B : Set l3) (f : A  type-Set B) 
    is-prop (reflects-Equivalence-Relation f)
  is-prop-reflects-Equivalence-Relation B f =
    is-prop-Π'
      ( λ x 
        is-prop-Π'
          ( λ y 
            is-prop-function-type (is-set-type-Set B (f x) (f y))))

  reflects-Equivalence-Relation-Prop :
    {l3 : Level} (B : Set l3) (f : A  type-Set B)  Prop (l1  l2  l3)
  pr1 (reflects-Equivalence-Relation-Prop B f) = reflects-Equivalence-Relation f
  pr2 (reflects-Equivalence-Relation-Prop B f) =
    is-prop-reflects-Equivalence-Relation B f

Properties

Any surjective and effective map reflects the equivalence relation

module _
  {l1 l2 l3 : Level} {A : UU l1} (R : Equivalence-Relation l2 A) (B : Set l3)
  (q : A  type-Set B)
  where

  reflects-Equivalence-Relation-is-surjective-and-effective :
    is-surjective-and-effective R q  reflects-Equivalence-Relation R q
  reflects-Equivalence-Relation-is-surjective-and-effective E {x} {y} =
    map-inv-equiv (pr2 E x y)

  reflecting-map-Equivalence-Relation-is-surjective-and-effective :
    is-surjective-and-effective R q 
    reflecting-map-Equivalence-Relation R (type-Set B)
  pr1 (reflecting-map-Equivalence-Relation-is-surjective-and-effective E) = q
  pr2 (reflecting-map-Equivalence-Relation-is-surjective-and-effective E) =
    reflects-Equivalence-Relation-is-surjective-and-effective E

Characterizing the identity type of reflecting maps into sets

module _
  {l1 l2 l3 : Level} {A : UU l1} (R : Equivalence-Relation l2 A) (B : Set l3)
  (f : reflecting-map-Equivalence-Relation R (type-Set B))
  where

  htpy-reflecting-map-Equivalence-Relation :
    (g : reflecting-map-Equivalence-Relation R (type-Set B))  UU (l1  l3)
  htpy-reflecting-map-Equivalence-Relation g =
    pr1 f ~ pr1 g

  refl-htpy-reflecting-map-Equivalence-Relation :
    htpy-reflecting-map-Equivalence-Relation f
  refl-htpy-reflecting-map-Equivalence-Relation = refl-htpy

  htpy-eq-reflecting-map-Equivalence-Relation :
    (g : reflecting-map-Equivalence-Relation R (type-Set B)) 
    f  g  htpy-reflecting-map-Equivalence-Relation g
  htpy-eq-reflecting-map-Equivalence-Relation .f refl =
    refl-htpy-reflecting-map-Equivalence-Relation

  is-contr-total-htpy-reflecting-map-Equivalence-Relation :
    is-contr
      ( Σ
        ( reflecting-map-Equivalence-Relation R (type-Set B))
        ( htpy-reflecting-map-Equivalence-Relation))
  is-contr-total-htpy-reflecting-map-Equivalence-Relation =
    is-contr-total-Eq-subtype
      ( is-contr-total-htpy (pr1 f))
      ( is-prop-reflects-Equivalence-Relation R B)
      ( pr1 f)
      ( refl-htpy)
      ( pr2 f)

  is-equiv-htpy-eq-reflecting-map-Equivalence-Relation :
    (g : reflecting-map-Equivalence-Relation R (type-Set B)) 
    is-equiv (htpy-eq-reflecting-map-Equivalence-Relation g)
  is-equiv-htpy-eq-reflecting-map-Equivalence-Relation =
    fundamental-theorem-id
      is-contr-total-htpy-reflecting-map-Equivalence-Relation
      htpy-eq-reflecting-map-Equivalence-Relation

  extensionality-reflecting-map-Equivalence-Relation :
    (g : reflecting-map-Equivalence-Relation R (type-Set B)) 
    (f  g)  htpy-reflecting-map-Equivalence-Relation g
  pr1 (extensionality-reflecting-map-Equivalence-Relation g) =
    htpy-eq-reflecting-map-Equivalence-Relation g
  pr2 (extensionality-reflecting-map-Equivalence-Relation g) =
    is-equiv-htpy-eq-reflecting-map-Equivalence-Relation g

  eq-htpy-reflecting-map-Equivalence-Relation :
    (g : reflecting-map-Equivalence-Relation R (type-Set B)) 
    htpy-reflecting-map-Equivalence-Relation g  f  g
  eq-htpy-reflecting-map-Equivalence-Relation g =
    map-inv-is-equiv (is-equiv-htpy-eq-reflecting-map-Equivalence-Relation g)

Recent changes