Functoriality of the combinator of directed trees
Content created by Fredrik Bakke and Egbert Rijke.
Created on 2023-05-03.
Last modified on 2023-09-11.
module trees.functoriality-combinator-directed-trees where
Imports
open import foundation.action-on-identifications-functions open import foundation.binary-transport open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.function-types open import foundation.homotopies open import foundation.identity-types open import foundation.transport-along-identifications open import foundation.universe-levels open import trees.combinator-directed-trees open import trees.directed-trees open import trees.equivalences-directed-trees open import trees.morphisms-directed-trees open import trees.rooted-morphisms-directed-trees
Idea
Given a family of rooted morphisms fᵢ : Sᵢ → Tᵢ
of directed trees, we obtain a
morphism
combinator f : combinator S → combinator T
of directed trees. Furthermore, f
is a family of equivalences of directed
trees if and only if combinator f
is an equivalence.
Definitions
The action of the combinator on families of rooted morphisms of directed trees
module _ {l1 l2 l3 l4 l5 : Level} {I : UU l1} (S : I → Directed-Tree l2 l3) (T : I → Directed-Tree l4 l5) (f : (i : I) → rooted-hom-Directed-Tree (S i) (T i)) where node-rooted-hom-combinator-Directed-Tree : node-combinator-Directed-Tree S → node-combinator-Directed-Tree T node-rooted-hom-combinator-Directed-Tree root-combinator-Directed-Tree = root-combinator-Directed-Tree node-rooted-hom-combinator-Directed-Tree ( node-inclusion-combinator-Directed-Tree i x) = node-inclusion-combinator-Directed-Tree i ( node-rooted-hom-Directed-Tree (S i) (T i) (f i) x) edge-rooted-hom-combinator-Directed-Tree : (x y : node-combinator-Directed-Tree S) → edge-combinator-Directed-Tree S x y → edge-combinator-Directed-Tree T ( node-rooted-hom-combinator-Directed-Tree x) ( node-rooted-hom-combinator-Directed-Tree y) edge-rooted-hom-combinator-Directed-Tree ._ ._ ( edge-to-root-combinator-Directed-Tree i) = tr ( λ u → edge-combinator-Directed-Tree T u root-combinator-Directed-Tree) ( ap ( node-inclusion-combinator-Directed-Tree i) ( preserves-root-rooted-hom-Directed-Tree (S i) (T i) (f i))) ( edge-to-root-combinator-Directed-Tree i) edge-rooted-hom-combinator-Directed-Tree ._ ._ ( edge-inclusion-combinator-Directed-Tree i x y e) = edge-inclusion-combinator-Directed-Tree i ( node-rooted-hom-Directed-Tree (S i) (T i) (f i) x) ( node-rooted-hom-Directed-Tree (S i) (T i) (f i) y) ( edge-rooted-hom-Directed-Tree (S i) (T i) (f i) e) hom-combinator-Directed-Tree : hom-Directed-Tree (combinator-Directed-Tree S) (combinator-Directed-Tree T) pr1 hom-combinator-Directed-Tree = node-rooted-hom-combinator-Directed-Tree pr2 hom-combinator-Directed-Tree = edge-rooted-hom-combinator-Directed-Tree preserves-root-rooted-hom-combinator-Directed-Tree : node-rooted-hom-combinator-Directed-Tree root-combinator-Directed-Tree = root-combinator-Directed-Tree preserves-root-rooted-hom-combinator-Directed-Tree = refl rooted-hom-combinator-Directed-Tree : rooted-hom-Directed-Tree ( combinator-Directed-Tree S) ( combinator-Directed-Tree T) pr1 rooted-hom-combinator-Directed-Tree = hom-combinator-Directed-Tree pr2 rooted-hom-combinator-Directed-Tree = preserves-root-rooted-hom-combinator-Directed-Tree
The action of the combinator is functorial
The action of the combinator preserves identity morphisms
module _ {l1 l2 l3 : Level} {I : UU l1} (T : I → Directed-Tree l2 l3) where node-id-rooted-hom-combinator-Directed-Tree : node-rooted-hom-combinator-Directed-Tree T T ( λ i → id-rooted-hom-Directed-Tree (T i)) ~ id node-id-rooted-hom-combinator-Directed-Tree root-combinator-Directed-Tree = refl node-id-rooted-hom-combinator-Directed-Tree ( node-inclusion-combinator-Directed-Tree i x) = refl edge-id-rooted-hom-combinator-Directed-Tree : (x y : node-combinator-Directed-Tree T) → (e : edge-combinator-Directed-Tree T x y) → binary-tr ( edge-combinator-Directed-Tree T) ( node-id-rooted-hom-combinator-Directed-Tree x) ( node-id-rooted-hom-combinator-Directed-Tree y) ( edge-rooted-hom-combinator-Directed-Tree T T ( λ i → id-rooted-hom-Directed-Tree (T i)) ( x) ( y) ( e)) = e edge-id-rooted-hom-combinator-Directed-Tree ._ ._ ( edge-to-root-combinator-Directed-Tree i) = refl edge-id-rooted-hom-combinator-Directed-Tree ._ ._ ( edge-inclusion-combinator-Directed-Tree i x y e) = refl id-rooted-hom-combinator-Directed-Tree : htpy-hom-Directed-Tree ( combinator-Directed-Tree T) ( combinator-Directed-Tree T) ( hom-combinator-Directed-Tree T T ( λ i → id-rooted-hom-Directed-Tree (T i))) ( id-hom-Directed-Tree (combinator-Directed-Tree T)) pr1 id-rooted-hom-combinator-Directed-Tree = node-id-rooted-hom-combinator-Directed-Tree pr2 id-rooted-hom-combinator-Directed-Tree = edge-id-rooted-hom-combinator-Directed-Tree
The action of the combinator on morphisms preserves composition
module _ {l1 l2 l3 l4 l5 l6 l7 : Level} {I : UU l1} (R : I → Directed-Tree l2 l3) (S : I → Directed-Tree l4 l5) (T : I → Directed-Tree l6 l7) (g : (i : I) → rooted-hom-Directed-Tree (S i) (T i)) (f : (i : I) → rooted-hom-Directed-Tree (R i) (S i)) where comp-rooted-hom-combinator-Directed-Tree : htpy-hom-Directed-Tree ( combinator-Directed-Tree R) ( combinator-Directed-Tree T) ( hom-combinator-Directed-Tree R T ( λ i → comp-rooted-hom-Directed-Tree (R i) (S i) (T i) (g i) (f i))) ( comp-hom-Directed-Tree ( combinator-Directed-Tree R) ( combinator-Directed-Tree S) ( combinator-Directed-Tree T) ( hom-combinator-Directed-Tree S T g) ( hom-combinator-Directed-Tree R S f)) pr1 comp-rooted-hom-combinator-Directed-Tree root-combinator-Directed-Tree = refl pr1 comp-rooted-hom-combinator-Directed-Tree ( node-inclusion-combinator-Directed-Tree i x) = refl pr2 comp-rooted-hom-combinator-Directed-Tree ._ ._ ( edge-to-root-combinator-Directed-Tree i) = eq-is-contr ( is-proof-irrelevant-edge-to-root-Directed-Tree ( combinator-Directed-Tree T) ( node-comp-hom-Directed-Tree ( combinator-Directed-Tree R) ( combinator-Directed-Tree S) ( combinator-Directed-Tree T) ( hom-combinator-Directed-Tree S T g) ( hom-combinator-Directed-Tree R S f) ( node-inclusion-combinator-Directed-Tree i ( root-Directed-Tree (R i)))) ( tr ( λ u → edge-combinator-Directed-Tree T u root-combinator-Directed-Tree) ( ap ( node-inclusion-combinator-Directed-Tree i) ( ( preserves-root-rooted-hom-Directed-Tree (S i) (T i) (g i)) ∙ ( ap ( node-rooted-hom-Directed-Tree (S i) (T i) (g i)) ( preserves-root-rooted-hom-Directed-Tree (R i) (S i) (f i))))) ( edge-to-root-combinator-Directed-Tree i))) pr2 comp-rooted-hom-combinator-Directed-Tree ._ ._ ( edge-inclusion-combinator-Directed-Tree i x y e) = refl
The action of the combinator on morphisms preserves homotopies
module _ {l1 l2 l3 l4 l5 : Level} {I : UU l1} (S : I → Directed-Tree l2 l3) (T : I → Directed-Tree l4 l5) (f g : (i : I) → rooted-hom-Directed-Tree (S i) (T i)) (H : (i : I) → htpy-rooted-hom-Directed-Tree (S i) (T i) (f i) (g i)) where node-htpy-hom-combinator-Directed-Tree : node-rooted-hom-combinator-Directed-Tree S T f ~ node-rooted-hom-combinator-Directed-Tree S T g node-htpy-hom-combinator-Directed-Tree root-combinator-Directed-Tree = refl node-htpy-hom-combinator-Directed-Tree ( node-inclusion-combinator-Directed-Tree i x) = ap ( node-inclusion-combinator-Directed-Tree i) ( node-htpy-rooted-hom-Directed-Tree (S i) (T i) (f i) (g i) (H i) x) edge-htpy-hom-combinator-Directed-Tree : ( x y : node-combinator-Directed-Tree S) ( e : edge-combinator-Directed-Tree S x y) → binary-tr ( edge-combinator-Directed-Tree T) ( node-htpy-hom-combinator-Directed-Tree x) ( node-htpy-hom-combinator-Directed-Tree y) ( edge-rooted-hom-combinator-Directed-Tree S T f x y e) = edge-rooted-hom-combinator-Directed-Tree S T g x y e edge-htpy-hom-combinator-Directed-Tree ._ ._ ( edge-to-root-combinator-Directed-Tree i) = eq-edge-to-root-Directed-Tree (combinator-Directed-Tree T) _ _ _ edge-htpy-hom-combinator-Directed-Tree ._ ._ ( edge-inclusion-combinator-Directed-Tree i x y e) = binary-tr-ap ( edge-combinator-Directed-Tree T) ( edge-inclusion-combinator-Directed-Tree i) ( node-htpy-rooted-hom-Directed-Tree (S i) (T i) (f i) (g i) (H i) x) ( node-htpy-rooted-hom-Directed-Tree (S i) (T i) (f i) (g i) (H i) y) ( edge-htpy-rooted-hom-Directed-Tree (S i) (T i) (f i) (g i) (H i) x y e) htpy-hom-combinator-Directed-Tree : htpy-hom-Directed-Tree ( combinator-Directed-Tree S) ( combinator-Directed-Tree T) ( hom-combinator-Directed-Tree S T f) ( hom-combinator-Directed-Tree S T g) pr1 htpy-hom-combinator-Directed-Tree = node-htpy-hom-combinator-Directed-Tree pr2 htpy-hom-combinator-Directed-Tree = edge-htpy-hom-combinator-Directed-Tree
The action of the combinator on families of equivalences of directed trees
module _ {l1 l2 l3 l4 l5 : Level} {I : UU l1} (S : I → Directed-Tree l2 l3) (T : I → Directed-Tree l4 l5) (f : (i : I) → equiv-Directed-Tree (S i) (T i)) where rooted-hom-equiv-combinator-Directed-Tree : rooted-hom-Directed-Tree ( combinator-Directed-Tree S) ( combinator-Directed-Tree T) rooted-hom-equiv-combinator-Directed-Tree = rooted-hom-combinator-Directed-Tree S T ( λ i → rooted-hom-equiv-Directed-Tree (S i) (T i) (f i)) hom-equiv-combinator-Directed-Tree : hom-Directed-Tree (combinator-Directed-Tree S) (combinator-Directed-Tree T) hom-equiv-combinator-Directed-Tree = hom-rooted-hom-Directed-Tree ( combinator-Directed-Tree S) ( combinator-Directed-Tree T) ( rooted-hom-equiv-combinator-Directed-Tree) node-equiv-combinator-Directed-Tree : node-combinator-Directed-Tree S → node-combinator-Directed-Tree T node-equiv-combinator-Directed-Tree = node-hom-Directed-Tree ( combinator-Directed-Tree S) ( combinator-Directed-Tree T) ( hom-equiv-combinator-Directed-Tree) edge-equiv-combinator-Directed-Tree : {x y : node-combinator-Directed-Tree S} → edge-combinator-Directed-Tree S x y → edge-combinator-Directed-Tree T ( node-equiv-combinator-Directed-Tree x) ( node-equiv-combinator-Directed-Tree y) edge-equiv-combinator-Directed-Tree = edge-hom-Directed-Tree ( combinator-Directed-Tree S) ( combinator-Directed-Tree T) ( hom-equiv-combinator-Directed-Tree)
Recent changes
- 2023-09-11. Fredrik Bakke. Transport along and action on equivalences (#706).
- 2023-06-10. Egbert Rijke. cleaning up transport and dependent identifications files (#650).
- 2023-06-10. Egbert Rijke and Fredrik Bakke. Cleaning up synthetic homotopy theory (#649).
- 2023-05-16. Fredrik Bakke. Swap from
md
totext
code blocks (#622). - 2023-05-13. Fredrik Bakke. Remove unused imports and fix some unaddressed comments (#621).