The alternation of sequences in metric abelian groups
Content created by Louis Wasserman.
Created on 2026-01-11.
Last modified on 2026-01-11.
{-# OPTIONS --lossy-unification #-} module analysis.alternation-sequences-metric-abelian-groups where
Imports
open import analysis.limits-of-sequences-metric-abelian-groups open import analysis.metric-abelian-groups open import analysis.series-metric-abelian-groups open import elementary-number-theory.natural-numbers open import elementary-number-theory.parity-natural-numbers open import elementary-number-theory.positive-rational-numbers open import foundation.coproduct-types open import foundation.function-extensionality open import foundation.homotopies open import foundation.identity-types open import foundation.involutions open import foundation.logical-equivalences open import foundation.transport-along-identifications open import foundation.universe-levels open import lists.sequences open import logic.functoriality-existential-quantification
Idea
The
alternation¶
of a sequence aₙ in a
metric abelian group is the sequence bₙ
where bₙ = aₙ if n is
even, and bₙ = -aₙ if
n is odd.
Definition
module _ {l1 l2 : Level} (G : Metric-Ab l1 l2) where alternation-sequence-Metric-Ab : sequence (type-Metric-Ab G) → sequence (type-Metric-Ab G) alternation-sequence-Metric-Ab a n = rec-coproduct ( λ _ → a n) ( λ _ → neg-Metric-Ab G (a n)) ( is-decidable-is-even-ℕ n)
Properties
If aₙ has a limit of 0, so does the alternating sequence
module _ {l1 l2 : Level} (G : Metric-Ab l1 l2) {a : sequence (type-Metric-Ab G)} where abstract is-limit-modulus-zero-alternation-sequence-Metric-Ab : (μ : ℚ⁺ → ℕ) → is-limit-modulus-sequence-Metric-Ab G a (zero-Metric-Ab G) μ → is-limit-modulus-sequence-Metric-Ab ( G) ( alternation-sequence-Metric-Ab G a) ( zero-Metric-Ab G) ( μ) is-limit-modulus-zero-alternation-sequence-Metric-Ab μ is-mod-μ ε n με≤n with is-decidable-is-even-ℕ n ... | inl even = is-mod-μ ε n με≤n ... | inr odd = tr ( neighborhood-Metric-Ab G ε (neg-Metric-Ab G (a n))) ( neg-zero-Metric-Ab G) ( forward-implication ( is-isometry-neg-Metric-Ab G ε (a n) (zero-Metric-Ab G)) ( is-mod-μ ε n με≤n)) is-limit-zero-alternation-sequence-Metric-Ab : is-limit-sequence-Metric-Ab G a (zero-Metric-Ab G) → is-limit-sequence-Metric-Ab ( G) ( alternation-sequence-Metric-Ab G a) ( zero-Metric-Ab G) is-limit-zero-alternation-sequence-Metric-Ab = map-tot-exists ( is-limit-modulus-zero-alternation-sequence-Metric-Ab)
Alternating a sequence is an involution
module _ {l1 l2 : Level} (G : Metric-Ab l1 l2) where abstract htpy-is-involution-alternation-sequence-Metric-Ab : (σ : sequence (type-Metric-Ab G)) → alternation-sequence-Metric-Ab G (alternation-sequence-Metric-Ab G σ) ~ σ htpy-is-involution-alternation-sequence-Metric-Ab σ n with is-decidable-is-even-ℕ n ... | inl even = refl ... | inr odd = neg-neg-Metric-Ab G (σ n) is-involution-alternation-sequence-Metric-Ab : is-involution (alternation-sequence-Metric-Ab G) is-involution-alternation-sequence-Metric-Ab σ = eq-htpy (htpy-is-involution-alternation-sequence-Metric-Ab σ)
Recent changes
- 2026-01-11. Louis Wasserman. Alternation of sequences (#1763).