∞-connected maps

Content created by Fredrik Bakke and Garrett Figueroa.

Created on 2025-07-27.
Last modified on 2025-07-27.

module foundation.infinity-connected-maps where
Imports
open import foundation.connected-maps
open import foundation.connected-types
open import foundation.dependent-pair-types
open import foundation.fibers-of-maps
open import foundation.infinity-connected-types
open import foundation.truncation-levels
open import foundation.unit-type
open import foundation.universe-levels

open import foundation-core.contractible-maps
open import foundation-core.contractible-types
open import foundation-core.equivalences
open import foundation-core.identity-types
open import foundation-core.propositions

Idea

A map f : X → Y is said to be ∞-connected if it is k-connected for all truncation levels k.

In particular, since equivalences have contractible fibers, equivalences are ∞-connected.

Definition

∞-connected maps

module _
  {l1 l2 : Level} {X : UU l1} {Y : UU l2} (f : X  Y)
  where

  is-∞-connected-map-Prop : Prop (l1  l2)
  is-∞-connected-map-Prop = Π-Prop Y  y  is-∞-connected-Prop (fiber f y))

  is-∞-connected-map : UU (l1  l2)
  is-∞-connected-map = type-Prop is-∞-connected-map-Prop

  is-prop-is-∞-connected-map : is-prop is-∞-connected-map
  is-prop-is-∞-connected-map = is-prop-type-Prop is-∞-connected-map-Prop

Equivalences are ∞-connected

module _
  {l1 l2 : Level} {X : UU l1} {Y : UU l2} (f : X  Y)
  where

  is-∞-connected-map-is-equiv : is-equiv f  is-∞-connected-map f
  is-∞-connected-map-is-equiv is-equiv-f k x =
    is-connected-map-is-equiv is-equiv-f k

Recent changes