∞-connected maps
Content created by Fredrik Bakke and Garrett Figueroa.
Created on 2025-07-27.
Last modified on 2025-07-27.
module foundation.infinity-connected-maps where
Imports
open import foundation.connected-maps open import foundation.connected-types open import foundation.dependent-pair-types open import foundation.fibers-of-maps open import foundation.infinity-connected-types open import foundation.truncation-levels open import foundation.unit-type open import foundation.universe-levels open import foundation-core.contractible-maps open import foundation-core.contractible-types open import foundation-core.equivalences open import foundation-core.identity-types open import foundation-core.propositions
Idea
A map f : X → Y
is said to be
∞-connected¶
if it is k
-connected for all
truncation levels k
.
In particular, since equivalences have contractible fibers, equivalences are ∞-connected.
Definition
∞-connected maps
module _ {l1 l2 : Level} {X : UU l1} {Y : UU l2} (f : X → Y) where is-∞-connected-map-Prop : Prop (l1 ⊔ l2) is-∞-connected-map-Prop = Π-Prop Y (λ y → is-∞-connected-Prop (fiber f y)) is-∞-connected-map : UU (l1 ⊔ l2) is-∞-connected-map = type-Prop is-∞-connected-map-Prop is-prop-is-∞-connected-map : is-prop is-∞-connected-map is-prop-is-∞-connected-map = is-prop-type-Prop is-∞-connected-map-Prop
Equivalences are ∞-connected
module _ {l1 l2 : Level} {X : UU l1} {Y : UU l2} (f : X → Y) where is-∞-connected-map-is-equiv : is-equiv f → is-∞-connected-map f is-∞-connected-map-is-equiv is-equiv-f k x = is-connected-map-is-equiv is-equiv-f k
Recent changes
- 2025-07-27. Garrett Figueroa and Fredrik Bakke. The Whitehead principle (#1453).