Commutator subgroups
Content created by Fredrik Bakke and Egbert Rijke.
Created on 2023-10-13.
Last modified on 2024-10-16.
module group-theory.commutator-subgroups where
Imports
open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.function-types open import foundation.identity-types open import foundation.propositional-truncations open import foundation.universe-levels open import group-theory.commutators-of-elements-groups open import group-theory.conjugation open import group-theory.groups open import group-theory.homomorphisms-groups open import group-theory.images-of-group-homomorphisms open import group-theory.normal-subgroups open import group-theory.pullbacks-subgroups open import group-theory.subgroups open import group-theory.subgroups-generated-by-families-of-elements-groups open import group-theory.subgroups-generated-by-subsets-groups open import group-theory.subsets-groups
Idea
Consider a group G
. The commutator subgroup
[G,G]
of G
is the
subgroup generated by
the commutators of G
.
Definitions
The commutator subgroup of a group
module _ {l : Level} (G : Group l) where family-of-commutators-Group : type-Group G × type-Group G → type-Group G family-of-commutators-Group x = commutator-Group G (pr1 x) (pr2 x) commutator-subgroup-Group : Subgroup l G commutator-subgroup-Group = subgroup-family-of-elements-Group G family-of-commutators-Group generating-subset-commutator-subgroup-Group : subset-Group l G generating-subset-commutator-subgroup-Group = generating-subset-subgroup-family-of-elements-Group G family-of-commutators-Group subset-commutator-subgroup-Group : subset-Group l G subset-commutator-subgroup-Group = subset-subgroup-family-of-elements-Group G family-of-commutators-Group is-in-commutator-subgroup-Group : type-Group G → UU l is-in-commutator-subgroup-Group = is-in-subgroup-family-of-elements-Group G family-of-commutators-Group is-closed-under-eq-commutator-subgroup-Group : {x y : type-Group G} → is-in-commutator-subgroup-Group x → x = y → is-in-commutator-subgroup-Group y is-closed-under-eq-commutator-subgroup-Group = is-closed-under-eq-subgroup-family-of-elements-Group G family-of-commutators-Group is-closed-under-eq-commutator-subgroup-Group' : {x y : type-Group G} → is-in-commutator-subgroup-Group y → x = y → is-in-commutator-subgroup-Group x is-closed-under-eq-commutator-subgroup-Group' = is-closed-under-eq-subgroup-family-of-elements-Group' G family-of-commutators-Group contains-unit-commutator-subgroup-Group : contains-unit-subset-Group G subset-commutator-subgroup-Group contains-unit-commutator-subgroup-Group = contains-unit-subgroup-family-of-elements-Group G family-of-commutators-Group is-closed-under-multiplication-commutator-subgroup-Group : is-closed-under-multiplication-subset-Group G subset-commutator-subgroup-Group is-closed-under-multiplication-commutator-subgroup-Group = is-closed-under-multiplication-subgroup-family-of-elements-Group G family-of-commutators-Group is-closed-under-inverses-commutator-subgroup-Group : is-closed-under-inverses-subset-Group G subset-commutator-subgroup-Group is-closed-under-inverses-commutator-subgroup-Group = is-closed-under-inverses-subgroup-family-of-elements-Group G family-of-commutators-Group contains-commutator-commutator-subgroup-Group : (x y : type-Group G) → is-in-commutator-subgroup-Group (commutator-Group G x y) contains-commutator-commutator-subgroup-Group x y = contains-element-subgroup-family-of-elements-Group G ( family-of-commutators-Group) ( x , y) is-subgroup-generated-by-family-of-commutators-commutator-subgroup-Group : is-subgroup-generated-by-family-of-elements-Group G family-of-commutators-Group commutator-subgroup-Group is-subgroup-generated-by-family-of-commutators-commutator-subgroup-Group = is-subgroup-generated-by-family-of-elements-subgroup-family-of-elements-Group ( G) ( family-of-commutators-Group) abstract is-closed-under-conjugation-generating-subset-commutator-subgroup-Group : is-closed-under-conjugation-subset-Group G generating-subset-commutator-subgroup-Group is-closed-under-conjugation-generating-subset-commutator-subgroup-Group x y H = apply-universal-property-trunc-Prop H ( generating-subset-commutator-subgroup-Group (conjugation-Group G x y)) ( λ where ( (y , z) , refl) → intro-exists ( conjugation-Group G x y , conjugation-Group G x z) ( inv (distributive-conjugation-commutator-Group G x y z))) abstract is-normal-commutator-subgroup-Group : is-normal-Subgroup G commutator-subgroup-Group is-normal-commutator-subgroup-Group = is-normal-is-closed-under-conjugation-subgroup-subset-Group G generating-subset-commutator-subgroup-Group is-closed-under-conjugation-generating-subset-commutator-subgroup-Group commutator-normal-subgroup-Group : Normal-Subgroup l G pr1 commutator-normal-subgroup-Group = commutator-subgroup-Group pr2 commutator-normal-subgroup-Group = is-normal-commutator-subgroup-Group
Properties
Every group homomorphism f : G → H
maps [G,G]
to [H,H]
There are two equivalent ways to express this fact:
- The image
im f [G,G]
of the commutator subgroup ofG
is contained in the commutator subgroup ofH
. - The commutator subgroup of
G
is contained in the pullback of the commutator subgroup[H,H]
along the group homomorphismf
.
Indeed, by the image-pullback Galois connection there is a logical equivalence
(im f [G,G] ⊆ [H,H]) ↔ ([G,G] ⊆ pullback f [H,H]).
module _ {l1 l2 : Level} (G : Group l1) (H : Group l2) (f : hom-Group G H) where contains-image-commutator-subgroup-hom-Group : leq-Subgroup H ( im-hom-Subgroup G H f (commutator-subgroup-Group G)) ( commutator-subgroup-Group H) contains-image-commutator-subgroup-hom-Group = leq-subgroup-is-subgroup-generated-by-family-of-elements-Group H ( map-hom-Group G H f ∘ family-of-commutators-Group G) ( im-hom-Subgroup G H f (commutator-subgroup-Group G)) ( is-subgroup-generated-by-family-of-elements-image-subgroup-family-of-elements-Group ( G) ( H) ( f) ( family-of-commutators-Group G)) ( commutator-subgroup-Group H) ( λ x → is-closed-under-eq-commutator-subgroup-Group' H ( contains-commutator-commutator-subgroup-Group H _ _) ( preserves-commutator-hom-Group G H f)) preserves-commutator-subgroup-hom-Group : leq-Subgroup G ( commutator-subgroup-Group G) ( pullback-Subgroup G H f (commutator-subgroup-Group H)) preserves-commutator-subgroup-hom-Group = forward-implication-is-image-subgroup-im-hom-Subgroup G H f ( commutator-subgroup-Group G) ( commutator-subgroup-Group H) ( contains-image-commutator-subgroup-hom-Group)
See also
- The fact that the commutator subgroup is
trivial if and only if the ambient group
is abelian is recorded in
group-theory.abelian-groups
.
External links
- Commutator subgroup at Lab
- Commutator subgroup at Wikidata
- Commutator subgroup at Wikipedia
- Commutator subgroup at Wolfram MathWorld
Recent changes
- 2024-10-16. Fredrik Bakke. Some links in elementary number theory (#1199).
- 2024-04-11. Fredrik Bakke and Egbert Rijke. Propositional operations (#1008).
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-11-09. Fredrik Bakke. Typeset
nlab
as$n$Lab
(#911). - 2023-10-22. Egbert Rijke and Fredrik Bakke. Functoriality of the quotient operation on groups (#838).