Products of elements in a monoid

Content created by Egbert Rijke and Fredrik Bakke.

Created on 2023-04-08.
Last modified on 2023-06-10.

module group-theory.products-of-elements-monoids where
Imports
open import foundation.action-on-identifications-functions
open import foundation.identity-types
open import foundation.universe-levels

open import group-theory.monoids

open import lists.concatenation-lists
open import lists.lists

Idea

Given a list of elements in a monoid, the elements in that list can be multiplied.

Definition

module _
  {l : Level} (M : Monoid l)
  where

  mul-list-Monoid : list (type-Monoid M)  type-Monoid M
  mul-list-Monoid nil = unit-Monoid M
  mul-list-Monoid (cons x l) = mul-Monoid M x (mul-list-Monoid l)

Properties

Distributivity of multiplication over concatenation

module _
  {l : Level} (M : Monoid l)
  where

  distributive-mul-concat-list-Monoid :
    (l1 l2 : list (type-Monoid M)) 
    Id
      ( mul-list-Monoid M (concat-list l1 l2))
      ( mul-Monoid M (mul-list-Monoid M l1) (mul-list-Monoid M l2))
  distributive-mul-concat-list-Monoid nil l2 =
    inv (left-unit-law-mul-Monoid M (mul-list-Monoid M l2))
  distributive-mul-concat-list-Monoid (cons x l1) l2 =
    ( ap (mul-Monoid M x) (distributive-mul-concat-list-Monoid l1 l2)) 
    ( inv
      ( associative-mul-Monoid M x
        ( mul-list-Monoid M l1)
        ( mul-list-Monoid M l2)))

Recent changes