Products of elements in a monoid
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-04-08.
Last modified on 2023-06-10.
module group-theory.products-of-elements-monoids where
Imports
open import foundation.action-on-identifications-functions open import foundation.identity-types open import foundation.universe-levels open import group-theory.monoids open import lists.concatenation-lists open import lists.lists
Idea
Given a list of elements in a monoid, the elements in that list can be multiplied.
Definition
module _ {l : Level} (M : Monoid l) where mul-list-Monoid : list (type-Monoid M) → type-Monoid M mul-list-Monoid nil = unit-Monoid M mul-list-Monoid (cons x l) = mul-Monoid M x (mul-list-Monoid l)
Properties
Distributivity of multiplication over concatenation
module _ {l : Level} (M : Monoid l) where distributive-mul-concat-list-Monoid : (l1 l2 : list (type-Monoid M)) → Id ( mul-list-Monoid M (concat-list l1 l2)) ( mul-Monoid M (mul-list-Monoid M l1) (mul-list-Monoid M l2)) distributive-mul-concat-list-Monoid nil l2 = inv (left-unit-law-mul-Monoid M (mul-list-Monoid M l2)) distributive-mul-concat-list-Monoid (cons x l1) l2 = ( ap (mul-Monoid M x) (distributive-mul-concat-list-Monoid l1 l2)) ∙ ( inv ( associative-mul-Monoid M x ( mul-list-Monoid M l1) ( mul-list-Monoid M l2)))
Recent changes
- 2023-06-10. Egbert Rijke and Fredrik Bakke. Cleaning up synthetic homotopy theory (#649).
- 2023-05-28. Fredrik Bakke. Enforce even indentation and automate some conventions (#635).
- 2023-04-08. Egbert Rijke. Refactoring elementary number theory files (#546).