Universal property of metric quotients of pseudometric spaces and isometries
Content created by malarbol.
Created on 2026-01-11.
Last modified on 2026-01-11.
{-# OPTIONS --lossy-unification #-} module metric-spaces.universal-property-isometries-metric-quotients-of-pseudometric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.action-on-identifications-functions open import foundation.binary-transport open import foundation.contractible-maps open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.fibers-of-maps open import foundation.function-types open import foundation.functoriality-dependent-pair-types open import foundation.homotopies open import foundation.identity-types open import foundation.propositions open import foundation.subtypes open import foundation.transport-along-identifications open import foundation.universe-levels open import metric-spaces.isometries-metric-spaces open import metric-spaces.isometries-pseudometric-spaces open import metric-spaces.maps-metric-spaces open import metric-spaces.metric-quotients-of-pseudometric-spaces open import metric-spaces.metric-spaces open import metric-spaces.pseudometric-spaces open import metric-spaces.rational-neighborhood-relations open import metric-spaces.short-maps-metric-spaces open import metric-spaces.short-maps-pseudometric-spaces open import metric-spaces.similarity-of-elements-pseudometric-spaces open import metric-spaces.universal-property-short-maps-metric-quotients-of-pseudometric-spaces
Idea
Precomposition with the natural
isometry from a
pseudometric space P into its
metric quotient
q : P → [P]
maps isometries into a metric space
[P] → M to isometries from
P to the underlying pseudometric space of M.
This action is an equivalence so isometries from a pseudometric space to a metric space are equivalent¶ to isometries from its metric quotient.
Equivalently, the metric quotient satisfies the
universal property¶
of metric quotients and isometries: for any isometry f : P → M into a metric
space M, there uniquely exists an
extension of f along q, i.e., an isometry g : [P] → M such that
g ∘ q ~ f.
Definitions
Precomposition of isometries by the metric quotient isometry
module _ {l1 l2 l1' l2' : Level} (P : Pseudometric-Space l1 l2) (M : Metric-Space l1' l2') where precomp-isometry-metric-quotient-Pseudometric-Space : isometry-Metric-Space (metric-quotient-Pseudometric-Space P) M → isometry-Pseudometric-Space P (pseudometric-Metric-Space M) precomp-isometry-metric-quotient-Pseudometric-Space f = comp-isometry-Pseudometric-Space ( P) ( pseudometric-metric-quotient-Pseudometric-Space P) ( pseudometric-Metric-Space M) ( f) ( isometry-metric-quotient-Pseudometric-Space P)
Induced isometry from the quotient metric space into a metric space
module _ {l1 l2 l1' l2' : Level} (A : Pseudometric-Space l1 l2) (B : Metric-Space l1' l2') (f : isometry-Pseudometric-Space A (pseudometric-Metric-Space B)) where map-exten-isometry-metric-quotient-Pseudometric-Space : map-Metric-Space ( metric-quotient-Pseudometric-Space A) ( B) map-exten-isometry-metric-quotient-Pseudometric-Space = map-exten-short-map-metric-quotient-Pseudometric-space ( A) ( B) ( short-map-isometry-Pseudometric-Space ( A) ( pseudometric-Metric-Space B) ( f)) compute-map-exten-isometry-metric-quotient-Pseudometric-Space : (X : type-metric-quotient-Pseudometric-Space A) → {x : type-Pseudometric-Space A} → is-in-class-metric-quotient-Pseudometric-Space A X x → map-exten-isometry-metric-quotient-Pseudometric-Space X = map-isometry-Pseudometric-Space ( A) ( pseudometric-Metric-Space B) ( f) ( x) compute-map-exten-isometry-metric-quotient-Pseudometric-Space = compute-map-exten-short-map-metric-quotient-Pseudometric-Space ( A) ( B) ( short-map-isometry-Pseudometric-Space ( A) ( pseudometric-Metric-Space B) ( f))
Extensions of isometries along the natural inclusion into the metric quotient
The property of being the extension of an isometry
module _ {l1 l2 l1' l2' : Level} (P : Pseudometric-Space l1 l2) (M : Metric-Space l1' l2') (f : isometry-Pseudometric-Space P (pseudometric-Metric-Space M)) (g : isometry-Metric-Space (metric-quotient-Pseudometric-Space P) M) where is-extension-prop-isometry-metric-quotient-Pseudometric-Space : Prop (l1 ⊔ l1') is-extension-prop-isometry-metric-quotient-Pseudometric-Space = Π-Prop ( type-Pseudometric-Space P) ( λ x → eq-prop-Metric-Space ( M) ( map-isometry-Pseudometric-Space ( P) ( pseudometric-Metric-Space M) ( precomp-isometry-metric-quotient-Pseudometric-Space P M g) ( x)) ( map-isometry-Pseudometric-Space ( P) ( pseudometric-Metric-Space M) ( f) ( x))) is-extension-isometry-metric-quotient-Pseudometric-Space : UU (l1 ⊔ l1') is-extension-isometry-metric-quotient-Pseudometric-Space = type-Prop is-extension-prop-isometry-metric-quotient-Pseudometric-Space is-prop-is-extension-isometry-metric-quotient-Pseudometric-Space : is-prop is-extension-isometry-metric-quotient-Pseudometric-Space is-prop-is-extension-isometry-metric-quotient-Pseudometric-Space = is-prop-type-Prop is-extension-prop-isometry-metric-quotient-Pseudometric-Space
The type of extensions of isometries
module _ {l1 l2 l1' l2' : Level} (P : Pseudometric-Space l1 l2) (M : Metric-Space l1' l2') (f : isometry-Pseudometric-Space P (pseudometric-Metric-Space M)) where extension-isometry-metric-quotient-Pseudometric-Space : UU (l1 ⊔ l2 ⊔ l1' ⊔ l2') extension-isometry-metric-quotient-Pseudometric-Space = Σ ( isometry-Metric-Space (metric-quotient-Pseudometric-Space P) M) ( is-extension-isometry-metric-quotient-Pseudometric-Space P M f) module _ {l1 l2 l1' l2' : Level} (P : Pseudometric-Space l1 l2) (M : Metric-Space l1' l2') (f : isometry-Pseudometric-Space P (pseudometric-Metric-Space M)) (g : extension-isometry-metric-quotient-Pseudometric-Space P M f) where isometry-extension-isometry-metric-quotient-Pseudometric-Space : isometry-Metric-Space (metric-quotient-Pseudometric-Space P) M isometry-extension-isometry-metric-quotient-Pseudometric-Space = pr1 g map-extension-isometry-metric-quotient-Pseudometric-Space : map-Metric-Space (metric-quotient-Pseudometric-Space P) M map-extension-isometry-metric-quotient-Pseudometric-Space = map-isometry-Metric-Space ( metric-quotient-Pseudometric-Space P) ( M) ( isometry-extension-isometry-metric-quotient-Pseudometric-Space) is-extension-isometry-extension-isometry-metric-quotient-Pseudometric-Space : map-extension-isometry-metric-quotient-Pseudometric-Space ∘ map-metric-quotient-Pseudometric-Space P ~ map-isometry-Pseudometric-Space P (pseudometric-Metric-Space M) f is-extension-isometry-extension-isometry-metric-quotient-Pseudometric-Space = pr2 g
Properties
Extensions are fibers of precomposition map of the natural inclusion of metric quotients
module _ {l1 l2 l1' l2' : Level} (P : Pseudometric-Space l1 l2) (M : Metric-Space l1' l2') (f : isometry-Pseudometric-Space P (pseudometric-Metric-Space M)) where compute-extension-fiber-precomp-isometry-metric-quotient-Pseudometric-Space : fiber (precomp-isometry-metric-quotient-Pseudometric-Space P M) f ≃ extension-isometry-metric-quotient-Pseudometric-Space P M f compute-extension-fiber-precomp-isometry-metric-quotient-Pseudometric-Space = equiv-tot ( λ g → equiv-eq-htpy-map-isometry-Pseudometric-Space ( P) ( pseudometric-Metric-Space M) ( precomp-isometry-metric-quotient-Pseudometric-Space P M g) ( f))
The extension of an isometry is an isometry
module _ {l1 l2 l1' l2' : Level} (P : Pseudometric-Space l1 l2) (M : Metric-Space l1' l2') (f : isometry-Pseudometric-Space P (pseudometric-Metric-Space M)) where abstract preserves-neighborhoods-map-exten-isometry-metric-quotient-Pseudometric-Space : (d : ℚ⁺) → (x y : type-metric-quotient-Pseudometric-Space P) → neighborhood-metric-quotient-Pseudometric-Space ( P) ( d) ( x) ( y) → neighborhood-Metric-Space ( M) ( d) ( map-exten-isometry-metric-quotient-Pseudometric-Space P M f x) ( map-exten-isometry-metric-quotient-Pseudometric-Space P M f y) preserves-neighborhoods-map-exten-isometry-metric-quotient-Pseudometric-Space = is-short-map-exten-short-map-metric-quotient-Pseudometric-Space ( P) ( M) ( short-map-isometry-Pseudometric-Space ( P) ( pseudometric-Metric-Space M) ( f)) reflects-neighborhoods-map-exten-isometry-metric-quotient-Pseudometric-Space : (d : ℚ⁺) → (x y : type-metric-quotient-Pseudometric-Space P) → neighborhood-Metric-Space ( M) ( d) ( map-exten-isometry-metric-quotient-Pseudometric-Space P M f x) ( map-exten-isometry-metric-quotient-Pseudometric-Space P M f y) → neighborhood-metric-quotient-Pseudometric-Space ( P) ( d) ( x) ( y) reflects-neighborhoods-map-exten-isometry-metric-quotient-Pseudometric-Space d X Y N⟨fX,fY⟩ (x , x∈X) (y , y∈Y) = reflects-neighborhoods-map-isometry-Pseudometric-Space ( P) ( pseudometric-Metric-Space M) ( f) ( d) ( x) ( y) ( binary-tr ( neighborhood-Metric-Space M d) ( compute-map-exten-isometry-metric-quotient-Pseudometric-Space ( P) ( M) ( f) ( X) ( x∈X)) ( compute-map-exten-isometry-metric-quotient-Pseudometric-Space ( P) ( M) ( f) ( Y) ( y∈Y)) ( N⟨fX,fY⟩)) is-isometry-map-exten-isometry-metric-quotient-Pseudometric-Space : is-isometry-Metric-Space ( metric-quotient-Pseudometric-Space P) ( M) ( map-exten-isometry-metric-quotient-Pseudometric-Space P M f) is-isometry-map-exten-isometry-metric-quotient-Pseudometric-Space d x y = ( ( preserves-neighborhoods-map-exten-isometry-metric-quotient-Pseudometric-Space ( d) ( x) ( y)) , ( reflects-neighborhoods-map-exten-isometry-metric-quotient-Pseudometric-Space ( d) ( x) ( y)))
The extension induced by an isometry
module _ {l1 l2 l1' l2' : Level} (P : Pseudometric-Space l1 l2) (M : Metric-Space l1' l2') (f : isometry-Pseudometric-Space P (pseudometric-Metric-Space M)) where isometry-exten-isometry-metric-quotient-Pseudometric-Space : isometry-Metric-Space (metric-quotient-Pseudometric-Space P) M isometry-exten-isometry-metric-quotient-Pseudometric-Space = ( map-exten-isometry-metric-quotient-Pseudometric-Space P M f , is-isometry-map-exten-isometry-metric-quotient-Pseudometric-Space P M f) is-extension-exten-isometry-metric-quotient-Pseudometric-Space : is-extension-isometry-metric-quotient-Pseudometric-Space P M f isometry-exten-isometry-metric-quotient-Pseudometric-Space is-extension-exten-isometry-metric-quotient-Pseudometric-Space = is-extension-exten-short-map-metric-quotient-Pseudometric-Space ( P) ( M) ( short-map-isometry-Pseudometric-Space ( P) ( pseudometric-Metric-Space M) ( f)) exten-isometry-metric-quotient-Pseudometric-Space : extension-isometry-metric-quotient-Pseudometric-Space P M f exten-isometry-metric-quotient-Pseudometric-Space = ( isometry-exten-isometry-metric-quotient-Pseudometric-Space , is-extension-exten-isometry-metric-quotient-Pseudometric-Space)
All extensions are homotopic to the induced extension
module _ {l1 l2 l1' l2' : Level} (P : Pseudometric-Space l1 l2) (M : Metric-Space l1' l2') (f : isometry-Pseudometric-Space P (pseudometric-Metric-Space M)) where abstract all-htpy-map-extension-isometry-metric-quotient-Pseudometric-Space : (g : extension-isometry-metric-quotient-Pseudometric-Space P M f) → htpy-map-isometry-Metric-Space ( metric-quotient-Pseudometric-Space P) ( M) ( isometry-exten-isometry-metric-quotient-Pseudometric-Space P M f) ( isometry-extension-isometry-metric-quotient-Pseudometric-Space ( P) ( M) ( f) ( g)) all-htpy-map-extension-isometry-metric-quotient-Pseudometric-Space g = all-htpy-map-extension-short-map-metric-quotient-Pseudometric-Space ( P) ( M) ( short-map-isometry-Pseudometric-Space P (pseudometric-Metric-Space M) f) ( map-Σ-map-base ( short-map-isometry-Metric-Space (metric-quotient-Pseudometric-Space ( P)) ( M)) ( is-extension-short-map-metric-quotient-Pseudometric-Space P M ( short-map-isometry-Pseudometric-Space ( P) ( pseudometric-Metric-Space M) ( f))) ( g))
All extensions are equal to the induced extension
module _ {l1 l2 l1' l2' : Level} (P : Pseudometric-Space l1 l2) (M : Metric-Space l1' l2') (f : isometry-Pseudometric-Space P (pseudometric-Metric-Space M)) where abstract contraction-extension-isometry-metric-quotient-Pseudometric-Space : (g : extension-isometry-metric-quotient-Pseudometric-Space P M f) → exten-isometry-metric-quotient-Pseudometric-Space P M f = g contraction-extension-isometry-metric-quotient-Pseudometric-Space g = eq-type-subtype ( is-extension-prop-isometry-metric-quotient-Pseudometric-Space P M f) ( eq-htpy-map-isometry-Metric-Space ( metric-quotient-Pseudometric-Space P) ( M) ( all-htpy-map-extension-isometry-metric-quotient-Pseudometric-Space ( P) ( M) ( f) ( g)))
The type of extensions of an isometry is contractible
module _ {l1 l2 l1' l2' : Level} (P : Pseudometric-Space l1 l2) (M : Metric-Space l1' l2') (f : isometry-Pseudometric-Space P (pseudometric-Metric-Space M)) where is-contr-extension-isometry-metric-quotient-Pseudometric-Space : is-contr ( extension-isometry-metric-quotient-Pseudometric-Space P M f) is-contr-extension-isometry-metric-quotient-Pseudometric-Space = ( exten-isometry-metric-quotient-Pseudometric-Space P M f , contraction-extension-isometry-metric-quotient-Pseudometric-Space P M f)
Precomposing by the natual isometry of metric quotients is an equivalence
module _ {l1 l2 l1' l2' : Level} (P : Pseudometric-Space l1 l2) (M : Metric-Space l1' l2') where abstract is-contr-map-precomp-isometry-metric-quotient-Pseudometric-Space : (f : isometry-Pseudometric-Space P (pseudometric-Metric-Space M)) → is-contr (fiber (precomp-isometry-metric-quotient-Pseudometric-Space P M) f) is-contr-map-precomp-isometry-metric-quotient-Pseudometric-Space f = is-contr-equiv ( extension-isometry-metric-quotient-Pseudometric-Space P M f) ( compute-extension-fiber-precomp-isometry-metric-quotient-Pseudometric-Space ( P) ( M) ( f)) ( is-contr-extension-isometry-metric-quotient-Pseudometric-Space P M f) is-equiv-precomp-isometry-metric-quotient-Pseudometric-Space : is-equiv (precomp-isometry-metric-quotient-Pseudometric-Space P M) is-equiv-precomp-isometry-metric-quotient-Pseudometric-Space = is-equiv-is-contr-map is-contr-map-precomp-isometry-metric-quotient-Pseudometric-Space
The equivalence between isometries from a pseudometric space in a metric space and isometries from the metric quotient
module _ {l1 l2 l1' l2' : Level} (P : Pseudometric-Space l1 l2) (M : Metric-Space l1' l2') where equiv-isometry-metric-quotient-Pseudometric-Space : isometry-Metric-Space (metric-quotient-Pseudometric-Space P) M ≃ isometry-Pseudometric-Space P (pseudometric-Metric-Space M) equiv-isometry-metric-quotient-Pseudometric-Space = ( precomp-isometry-metric-quotient-Pseudometric-Space P M , is-equiv-precomp-isometry-metric-quotient-Pseudometric-Space P M)
Recent changes
- 2026-01-11. malarbol. Universal property of metric quotients and isometries (#1787).