Products in precategories
Content created by Fredrik Bakke and Egbert Rijke.
Created on 2023-09-13.
Last modified on 2024-04-11.
module category-theory.products-in-precategories where
Imports
open import category-theory.precategories open import foundation.action-on-identifications-functions open import foundation.cartesian-product-types open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.iterated-dependent-product-types open import foundation.propositions open import foundation.uniqueness-quantification open import foundation.universe-levels
Idea
A product of two objects x
and x
in a category C
consists of:
- an object
p
- morphisms
l : hom p x
andr : hom p y
such that for every objectz
and morphismsf : hom z x
andg : hom z y
there exists a unique morphismh : hom z p
such that l ∘ h = f
r ∘ h = g
.
We say that C
has all binary products if there is a choice of a product for
each pair of objects in C
.
Definition
module _ {l1 l2 : Level} (C : Precategory l1 l2) where is-product-obj-Precategory : (x y p : obj-Precategory C) → hom-Precategory C p x → hom-Precategory C p y → UU (l1 ⊔ l2) is-product-obj-Precategory x y p l r = (z : obj-Precategory C) (f : hom-Precategory C z x) → (g : hom-Precategory C z y) → ( uniquely-exists-structure ( hom-Precategory C z p) ( λ h → ( comp-hom-Precategory C l h = f) × ( comp-hom-Precategory C r h = g))) product-obj-Precategory : obj-Precategory C → obj-Precategory C → UU (l1 ⊔ l2) product-obj-Precategory x y = Σ (obj-Precategory C) λ p → Σ (hom-Precategory C p x) λ l → Σ (hom-Precategory C p y) λ r → is-product-obj-Precategory x y p l r has-all-binary-products-Precategory : UU (l1 ⊔ l2) has-all-binary-products-Precategory = (x y : obj-Precategory C) → product-obj-Precategory x y module _ {l1 l2 : Level} (C : Precategory l1 l2) (t : has-all-binary-products-Precategory C) where object-product-obj-Precategory : obj-Precategory C → obj-Precategory C → obj-Precategory C object-product-obj-Precategory x y = pr1 (t x y) pr1-product-obj-Precategory : (x y : obj-Precategory C) → hom-Precategory C (object-product-obj-Precategory x y) x pr1-product-obj-Precategory x y = pr1 (pr2 (t x y)) pr2-product-obj-Precategory : (x y : obj-Precategory C) → hom-Precategory C (object-product-obj-Precategory x y) y pr2-product-obj-Precategory x y = pr1 (pr2 (pr2 (t x y))) module _ (x y z : obj-Precategory C) (f : hom-Precategory C z x) (g : hom-Precategory C z y) where morphism-into-product-obj-Precategory : hom-Precategory C z (object-product-obj-Precategory x y) morphism-into-product-obj-Precategory = pr1 (pr1 (pr2 (pr2 (pr2 (t x y))) z f g)) morphism-into-product-obj-Precategory-comm-pr1 : comp-hom-Precategory C ( pr1-product-obj-Precategory x y) ( morphism-into-product-obj-Precategory) = f morphism-into-product-obj-Precategory-comm-pr1 = pr1 (pr2 (pr1 (pr2 (pr2 (pr2 (t x y))) z f g))) morphism-into-product-obj-Precategory-comm-pr2 : comp-hom-Precategory C ( pr2-product-obj-Precategory x y) ( morphism-into-product-obj-Precategory) = g morphism-into-product-obj-Precategory-comm-pr2 = pr2 (pr2 (pr1 (pr2 (pr2 (pr2 (t x y))) z f g))) is-unique-morphism-into-product-obj-Precategory : (h : hom-Precategory C z (object-product-obj-Precategory x y)) → comp-hom-Precategory C (pr1-product-obj-Precategory x y) h = f → comp-hom-Precategory C (pr2-product-obj-Precategory x y) h = g → morphism-into-product-obj-Precategory = h is-unique-morphism-into-product-obj-Precategory h comm1 comm2 = ap pr1 ((pr2 (pr2 (pr2 (pr2 (t x y))) z f g)) (h , (comm1 , comm2))) module _ {l1 l2 : Level} (C : Precategory l1 l2) (x y p : obj-Precategory C) (l : hom-Precategory C p x) (r : hom-Precategory C p y) where is-prop-is-product-obj-Precategory : is-prop (is-product-obj-Precategory C x y p l r) is-prop-is-product-obj-Precategory = is-prop-iterated-Π 3 (λ z f g → is-property-is-contr) is-product-prop-Precategory : Prop (l1 ⊔ l2) pr1 is-product-prop-Precategory = is-product-obj-Precategory C x y p l r pr2 is-product-prop-Precategory = is-prop-is-product-obj-Precategory
Properties
Products of morphisms
If C
has all binary products then for any pair of morphisms f : hom x₁ y₁
and g : hom x₂ y₂
we can construct a morphism
f × g : hom (x₁ × x₂) (y₁ × y₂)
.
module _ {l1 l2 : Level} (C : Precategory l1 l2) (t : has-all-binary-products-Precategory C) {x₁ x₂ y₁ y₂ : obj-Precategory C} (f : hom-Precategory C x₁ y₁) (g : hom-Precategory C x₂ y₂) where map-product-obj-Precategory : hom-Precategory C (object-product-obj-Precategory C t x₁ x₂) (object-product-obj-Precategory C t y₁ y₂) map-product-obj-Precategory = morphism-into-product-obj-Precategory C t _ _ _ (comp-hom-Precategory C f (pr1-product-obj-Precategory C t x₁ x₂)) (comp-hom-Precategory C g (pr2-product-obj-Precategory C t x₁ x₂))
Recent changes
- 2024-04-11. Fredrik Bakke and Egbert Rijke. Propositional operations (#1008).
- 2024-02-06. Fredrik Bakke. Rename
(co)prod
to(co)product
(#1017). - 2023-11-01. Fredrik Bakke. Opposite categories, gaunt categories, replete subprecategories, large Yoneda, and miscellaneous additions (#880).
- 2023-09-27. Fredrik Bakke. Presheaf categories (#801).
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).