Large function abelian groups
Content created by Louis Wasserman.
Created on 2025-11-16.
Last modified on 2025-11-16.
module group-theory.large-function-abelian-groups where
Imports
open import foundation.function-extensionality open import foundation.universe-levels open import group-theory.large-abelian-groups open import group-theory.large-function-groups
Idea
Given a large abelian group G and an
arbitrary type A, A → G forms a large abelian group.
Definition
module _ {l1 : Level} {α : Level → Level} {β : Level → Level → Level} (A : UU l1) (G : Large-Ab α β) where function-Large-Ab : Large-Ab (λ l → l1 ⊔ α l) (λ l2 l3 → l1 ⊔ β l2 l3) large-group-Large-Ab function-Large-Ab = function-Large-Group A (large-group-Large-Ab G) commutative-add-Large-Ab function-Large-Ab f g = eq-htpy (λ a → commutative-add-Large-Ab G (f a) (g a))
Recent changes
- 2025-11-16. Louis Wasserman. Large function commutative rings (#1719).