Morphisms of cocones under morphisms of sequential diagrams
Content created by Vojtěch Štěpančík.
Created on 2024-04-16.
Last modified on 2024-04-16.
module synthetic-homotopy-theory.morphisms-cocones-under-morphisms-sequential-diagrams where
Imports
open import elementary-number-theory.natural-numbers open import foundation.commuting-prisms-of-maps open import foundation.commuting-squares-of-maps open import foundation.dependent-pair-types open import foundation.universe-levels open import synthetic-homotopy-theory.cocones-under-sequential-diagrams open import synthetic-homotopy-theory.morphisms-sequential-diagrams open import synthetic-homotopy-theory.sequential-diagrams
Idea
Consider two
sequential diagrams (A, a)
and (B, b), equipped with
cocones
c : A → X and c' : B → Y, respectively, and a
morphism of sequential diagrams
h : A → B. Then a
morphism of cocones¶
under h is a triple (u, H, K), with u : X → Y a map of vertices of the
coforks, H a family of homotopies witnessing
that the square
           iₙ
     Aₙ -------> X
     |           |
  hₙ |           | u
     |           |
     ∨           ∨
     Bₙ -------> Y
           i'ₙ
commutes for every n, and K
a family of coherence data filling the insides of the resulting
prism boundaries
            Aₙ₊₁
       aₙ  ∧ |  \  iₙ₊₁
         /   |    \
       /     |      ∨
     Aₙ -----------> X
     |   iₙ  |       |
     |       | hₙ₊₁  |
  hₙ |       ∨       | u
     |      Bₙ₊₁     |
     |  bₙ ∧   \i'ₙ₊₁|
     |   /       \   |
     ∨ /           ∨ ∨
     Bₙ -----------> Y
            i'ₙ
for every n.
Definition
Morphisms of cocones under morphisms of sequential diagrams
module _ {l1 l2 l3 l4 : Level} {A : sequential-diagram l1} {X : UU l2} (c : cocone-sequential-diagram A X) {B : sequential-diagram l3} {Y : UU l4} (c' : cocone-sequential-diagram B Y) (h : hom-sequential-diagram A B) where coherence-map-cocone-hom-cocone-hom-sequential-diagram : (X → Y) → UU (l1 ⊔ l4) coherence-map-cocone-hom-cocone-hom-sequential-diagram u = (n : ℕ) → coherence-square-maps ( map-cocone-sequential-diagram c n) ( map-hom-sequential-diagram B h n) ( u) ( map-cocone-sequential-diagram c' n) coherence-hom-cocone-hom-sequential-diagram : (u : X → Y) → coherence-map-cocone-hom-cocone-hom-sequential-diagram u → UU (l1 ⊔ l4) coherence-hom-cocone-hom-sequential-diagram u H = (n : ℕ) → vertical-coherence-prism-maps ( map-cocone-sequential-diagram c n) ( map-cocone-sequential-diagram c (succ-ℕ n)) ( map-sequential-diagram A n) ( map-cocone-sequential-diagram c' n) ( map-cocone-sequential-diagram c' (succ-ℕ n)) ( map-sequential-diagram B n) ( map-hom-sequential-diagram B h n) ( map-hom-sequential-diagram B h (succ-ℕ n)) ( u) ( coherence-cocone-sequential-diagram c n) ( H n) ( H (succ-ℕ n)) ( naturality-map-hom-sequential-diagram B h n) ( coherence-cocone-sequential-diagram c' n) hom-cocone-hom-sequential-diagram : UU (l1 ⊔ l2 ⊔ l4) hom-cocone-hom-sequential-diagram = Σ ( X → Y) ( λ u → Σ ( coherence-map-cocone-hom-cocone-hom-sequential-diagram u) ( coherence-hom-cocone-hom-sequential-diagram u))
Components of a morphism of cocones under a morphism of sequential diagrams
module _ {l1 l2 l3 l4 : Level} {A : sequential-diagram l1} {X : UU l2} (c : cocone-sequential-diagram A X) {B : sequential-diagram l3} {Y : UU l4} (c' : cocone-sequential-diagram B Y) {h : hom-sequential-diagram A B} (m : hom-cocone-hom-sequential-diagram c c' h) where map-hom-cocone-hom-sequential-diagram : X → Y map-hom-cocone-hom-sequential-diagram = pr1 m coh-map-cocone-hom-cocone-hom-sequential-diagram : coherence-map-cocone-hom-cocone-hom-sequential-diagram c c' h ( map-hom-cocone-hom-sequential-diagram) coh-map-cocone-hom-cocone-hom-sequential-diagram = pr1 (pr2 m) coh-hom-cocone-hom-sequential-diagram : coherence-hom-cocone-hom-sequential-diagram c c' h ( map-hom-cocone-hom-sequential-diagram) ( coh-map-cocone-hom-cocone-hom-sequential-diagram) coh-hom-cocone-hom-sequential-diagram = pr2 (pr2 m)
Recent changes
- 2024-04-16. Vojtěch Štěpančík. Descent data for sequential colimits and its version of the flattening lemma (#1109).