Sequences with alternating signs in the real numbers
Content created by Louis Wasserman.
Created on 2026-01-11.
Last modified on 2026-01-11.
{-# OPTIONS --lossy-unification #-} module real-numbers.sequences-with-alternating-signs-real-numbers where
Imports
open import elementary-number-theory.natural-numbers open import elementary-number-theory.parity-natural-numbers open import foundation.conjunction open import foundation.coproduct-types open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.propositions open import foundation.transport-along-identifications open import foundation.universe-levels open import lists.sequences open import real-numbers.alternation-sequences-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.nonnegative-real-numbers open import real-numbers.nonpositive-real-numbers open import real-numbers.positive-and-negative-real-numbers
Idea
A sequence of real numbers has alternating signs¶ if its elements at even indices are nonnegative and its elements at odd indices are nonpositive.
Definition
module _ {l : Level} (u : sequence (ℝ l)) where has-alternating-signs-prop-sequence-ℝ : Prop l has-alternating-signs-prop-sequence-ℝ = Π-Prop ℕ ( λ n → ( is-even-prop-ℕ n ⇒ is-nonnegative-prop-ℝ (u n)) ∧ ( is-odd-prop-ℕ n ⇒ is-nonpositive-prop-ℝ (u n))) has-alternating-signs-sequence-ℝ : UU l has-alternating-signs-sequence-ℝ = type-Prop has-alternating-signs-prop-sequence-ℝ
Properties
A sequence has alternating signs if and only if its alternation is nonnegative
module _ {l : Level} (u : sequence (ℝ l)) where abstract is-nonnegative-alternation-has-alternating-signs-sequence-ℝ : has-alternating-signs-sequence-ℝ u → (n : ℕ) → is-nonnegative-ℝ (alternation-sequence-ℝ u n) is-nonnegative-alternation-has-alternating-signs-sequence-ℝ H n with is-decidable-is-even-ℕ n ... | inl even = pr1 (H n) even ... | inr odd = neg-is-nonpositive-ℝ _ (pr2 (H n) odd) has-alternating-signs-is-nonnegative-alternation-sequence-ℝ : ((n : ℕ) → is-nonnegative-ℝ (alternation-sequence-ℝ u n)) → has-alternating-signs-sequence-ℝ u pr1 (has-alternating-signs-is-nonnegative-alternation-sequence-ℝ H n) even = tr is-nonnegative-ℝ (eq-alternation-sequence-is-even-ℝ u n even) (H n) pr2 (has-alternating-signs-is-nonnegative-alternation-sequence-ℝ H n) odd = is-nonpositive-is-nonnegative-neg-ℝ _ ( tr ( is-nonnegative-ℝ) ( eq-neg-alternation-sequence-is-odd-ℝ u n odd) ( H n))
Recent changes
- 2026-01-11. Louis Wasserman. Alternation of sequences (#1763).