Infima and suprema of families of real numbers
Content created by Louis Wasserman.
Created on 2025-10-25.
Last modified on 2025-10-25.
module real-numbers.infima-and-suprema-families-real-numbers where
Imports
open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.propositional-truncations open import foundation.subtypes open import foundation.universe-levels open import real-numbers.closed-intervals-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.infima-families-real-numbers open import real-numbers.raising-universe-levels-real-numbers open import real-numbers.subsets-real-numbers open import real-numbers.suprema-families-real-numbers
Idea
On this page we describe relationships between infima and suprema of families and subsets of the real numbers.
Properties
If a set of real numbers has an infimum and a supremum, the infimum is less than or equal to the supremum
module _ {l1 l2 l3 l4 : Level} (S : subset-ℝ l1 l2) (inf : ℝ l3) (is-inf : is-infimum-subset-ℝ S inf) (sup : ℝ l4) (is-sup : is-supremum-subset-ℝ S sup) where abstract leq-inf-sup-subset-ℝ : leq-ℝ inf sup leq-inf-sup-subset-ℝ = let open do-syntax-trunc-Prop (leq-prop-ℝ inf sup) in do (s , s∈S) ← is-inhabited-has-supremum-subset-ℝ S (sup , is-sup) transitive-leq-ℝ ( inf) ( s) ( sup) ( is-upper-bound-is-supremum-family-ℝ _ sup is-sup (s , s∈S)) ( is-lower-bound-is-infimum-family-ℝ _ inf is-inf (s , s∈S))
If a set of real numbers has an infimum x and a supremum y, it is a subset of a closed interval
abstract subset-closed-interval-has-inf-has-sup-subset-ℝ : {l1 l2 l3 l4 : Level} (S : subset-ℝ l1 l2) → has-infimum-subset-ℝ S l3 → has-supremum-subset-ℝ S l4 → Σ ( closed-interval-ℝ l3 l4) ( λ [a,b] → S ⊆ subtype-closed-interval-ℝ l2 [a,b]) subset-closed-interval-has-inf-has-sup-subset-ℝ S (inf , is-inf) (sup , is-sup) = ( ( (inf , sup) , leq-inf-sup-subset-ℝ S inf is-inf sup is-sup) , ( λ s s∈S → ( is-lower-bound-is-infimum-family-ℝ _ inf is-inf (s , s∈S) , is-upper-bound-is-supremum-family-ℝ _ sup is-sup (s , s∈S))))
Recent changes
- 2025-10-25. Louis Wasserman. Multiplication on the reals is uniformly continuous on each argument (#1624).