Infima and suprema of families of real numbers

Content created by Louis Wasserman.

Created on 2025-10-25.
Last modified on 2025-10-25.

module real-numbers.infima-and-suprema-families-real-numbers where
Imports
open import foundation.dependent-pair-types
open import foundation.existential-quantification
open import foundation.propositional-truncations
open import foundation.subtypes
open import foundation.universe-levels

open import real-numbers.closed-intervals-real-numbers
open import real-numbers.dedekind-real-numbers
open import real-numbers.inequality-real-numbers
open import real-numbers.infima-families-real-numbers
open import real-numbers.raising-universe-levels-real-numbers
open import real-numbers.subsets-real-numbers
open import real-numbers.suprema-families-real-numbers

Idea

On this page we describe relationships between infima and suprema of families and subsets of the real numbers.

Properties

If a set of real numbers has an infimum and a supremum, the infimum is less than or equal to the supremum

module _
  {l1 l2 l3 l4 : Level}
  (S : subset-ℝ l1 l2)
  (inf :  l3)
  (is-inf : is-infimum-subset-ℝ S inf)
  (sup :  l4)
  (is-sup : is-supremum-subset-ℝ S sup)
  where

  abstract
    leq-inf-sup-subset-ℝ : leq-ℝ inf sup
    leq-inf-sup-subset-ℝ =
      let open do-syntax-trunc-Prop (leq-prop-ℝ inf sup)
      in do
        (s , s∈S)  is-inhabited-has-supremum-subset-ℝ S (sup , is-sup)
        transitive-leq-ℝ
          ( inf)
          ( s)
          ( sup)
          ( is-upper-bound-is-supremum-family-ℝ _ sup is-sup (s , s∈S))
          ( is-lower-bound-is-infimum-family-ℝ _ inf is-inf (s , s∈S))

If a set of real numbers has an infimum x and a supremum y, it is a subset of a closed interval

abstract
  subset-closed-interval-has-inf-has-sup-subset-ℝ :
    {l1 l2 l3 l4 : Level} (S : subset-ℝ l1 l2) 
    has-infimum-subset-ℝ S l3  has-supremum-subset-ℝ S l4 
    Σ ( closed-interval-ℝ l3 l4)
      ( λ [a,b]  S  subtype-closed-interval-ℝ l2 [a,b])
  subset-closed-interval-has-inf-has-sup-subset-ℝ
    S (inf , is-inf) (sup , is-sup) =
      ( ( (inf , sup) ,
          leq-inf-sup-subset-ℝ S inf is-inf sup is-sup) ,
        ( λ s s∈S 
          ( is-lower-bound-is-infimum-family-ℝ _ inf is-inf (s , s∈S) ,
            is-upper-bound-is-supremum-family-ℝ _ sup is-sup (s , s∈S))))

Recent changes