Homomorphisms of higher groups
Content created by Fredrik Bakke and Egbert Rijke.
Created on 2023-04-10.
Last modified on 2024-03-13.
module higher-group-theory.homomorphisms-higher-groups where
Imports
open import foundation.equivalences open import foundation.identity-types open import foundation.universe-levels open import higher-group-theory.higher-groups open import structured-types.pointed-homotopies open import structured-types.pointed-maps open import synthetic-homotopy-theory.functoriality-loop-spaces
Idea
A homomorphism of ∞-groups is a pointed map between their classifying types.
Definition
module _ {l1 l2 : Level} (G : ∞-Group l1) (H : ∞-Group l2) where hom-∞-Group : UU (l1 ⊔ l2) hom-∞-Group = classifying-pointed-type-∞-Group G →∗ classifying-pointed-type-∞-Group H classifying-map-hom-∞-Group : hom-∞-Group → classifying-type-∞-Group G → classifying-type-∞-Group H classifying-map-hom-∞-Group = map-pointed-map preserves-point-classifying-map-hom-∞-Group : (f : hom-∞-Group) → classifying-map-hom-∞-Group f (shape-∞-Group G) = shape-∞-Group H preserves-point-classifying-map-hom-∞-Group = preserves-point-pointed-map map-hom-∞-Group : hom-∞-Group → type-∞-Group G → type-∞-Group H map-hom-∞-Group = map-Ω preserves-unit-map-hom-∞-Group : (f : hom-∞-Group) → map-hom-∞-Group f (unit-∞-Group G) = unit-∞-Group H preserves-unit-map-hom-∞-Group = preserves-refl-map-Ω preserves-mul-map-hom-∞-Group : (f : hom-∞-Group) {x y : type-∞-Group G} → map-hom-∞-Group f (mul-∞-Group G x y) = mul-∞-Group H (map-hom-∞-Group f x) (map-hom-∞-Group f y) preserves-mul-map-hom-∞-Group = preserves-mul-map-Ω preserves-inv-map-hom-∞-Group : (f : hom-∞-Group) (x : type-∞-Group G) → map-hom-∞-Group f (inv-∞-Group G x) = inv-∞-Group H (map-hom-∞-Group f x) preserves-inv-map-hom-∞-Group = preserves-inv-map-Ω
Properties
Homotopies of morphisms of ∞-groups
module _ {l1 l2 : Level} (G : ∞-Group l1) (H : ∞-Group l2) (f : hom-∞-Group G H) where htpy-hom-∞-Group : (g : hom-∞-Group G H) → UU (l1 ⊔ l2) htpy-hom-∞-Group = pointed-htpy f extensionality-hom-∞-Group : (g : hom-∞-Group G H) → (f = g) ≃ htpy-hom-∞-Group g extensionality-hom-∞-Group = extensionality-pointed-map f eq-htpy-hom-∞-Group : (g : hom-∞-Group G H) → (htpy-hom-∞-Group g) → f = g eq-htpy-hom-∞-Group g = map-inv-equiv (extensionality-hom-∞-Group g)
Wild category structure on higher groups
module _ {l : Level} (G : ∞-Group l) where id-hom-∞-Group : hom-∞-Group G G id-hom-∞-Group = id-pointed-map module _ {l1 l2 l3 : Level} (G : ∞-Group l1) (H : ∞-Group l2) (K : ∞-Group l3) where comp-hom-∞-Group : hom-∞-Group H K → hom-∞-Group G H → hom-∞-Group G K comp-hom-∞-Group = comp-pointed-map module _ {l1 l2 l3 l4 : Level} (G : ∞-Group l1) (H : ∞-Group l2) (K : ∞-Group l3) (L : ∞-Group l4) where associative-comp-hom-∞-Group : (h : hom-∞-Group K L) (g : hom-∞-Group H K) (f : hom-∞-Group G H) → htpy-hom-∞-Group G L ( comp-hom-∞-Group G H L (comp-hom-∞-Group H K L h g) f) ( comp-hom-∞-Group G K L h (comp-hom-∞-Group G H K g f)) associative-comp-hom-∞-Group = associative-comp-pointed-map module _ {l1 l2 : Level} (G : ∞-Group l1) (H : ∞-Group l2) where left-unit-law-comp-hom-∞-Group : (f : hom-∞-Group G H) → htpy-hom-∞-Group G H (comp-hom-∞-Group G H H (id-hom-∞-Group H) f) f left-unit-law-comp-hom-∞-Group = left-unit-law-comp-pointed-map right-unit-law-comp-hom-∞-Group : (f : hom-∞-Group G H) → htpy-hom-∞-Group G H (comp-hom-∞-Group G G H f (id-hom-∞-Group G)) f right-unit-law-comp-hom-∞-Group = right-unit-law-comp-pointed-map
Recent changes
- 2024-03-13. Egbert Rijke. Refactoring pointed types (#1056).
- 2024-03-11. Fredrik Bakke. Refactor category theory to use strictly involutive identity types (#1052).
- 2023-11-27. Fredrik Bakke. Refactor categories to carry a bidirectional witness of associativity (#945).
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-07-19. Egbert Rijke. refactoring pointed maps (#682).