The minimum of finite families of real numbers
Content created by Louis Wasserman.
Created on 2025-09-02.
Last modified on 2025-09-02.
module real-numbers.minimum-finite-families-real-numbers where
Imports
open import elementary-number-theory.natural-numbers open import foundation.function-types open import foundation.universe-levels open import lists.finite-sequences open import order-theory.greatest-lower-bounds-large-posets open import real-numbers.dedekind-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.infima-families-real-numbers open import real-numbers.maximum-finite-families-real-numbers open import real-numbers.negation-real-numbers open import univalent-combinatorics.inhabited-finite-types
Idea
The minimum¶ of a family of Dedekind real numbers indexed by an inhabited finite type is their greatest lower bound.
Definition
The minimum of a nonempty finite sequence of real numbers
module _ {l : Level} (n : ℕ) (x : fin-sequence (ℝ l) (succ-ℕ n)) where opaque min-fin-sequence-ℝ : ℝ l min-fin-sequence-ℝ = neg-ℝ (max-fin-sequence-ℝ n (neg-ℝ ∘ x))
The minimum of an inhabited finite family of real numbers
module _ {l1 l2 : Level} (I : Inhabited-Finite-Type l1) (f : type-Inhabited-Finite-Type I → ℝ l2) where opaque min-finite-family-ℝ : ℝ l2 min-finite-family-ℝ = neg-ℝ (max-finite-family-ℝ I (neg-ℝ ∘ f))
Properties
The minimum of a finite sequence is its infimum
opaque unfolding min-fin-sequence-ℝ is-infimum-min-fin-sequence-ℝ : {l : Level} (n : ℕ) (x : fin-sequence (ℝ l) (succ-ℕ n)) → is-infimum-family-ℝ x (min-fin-sequence-ℝ n x) is-infimum-min-fin-sequence-ℝ n x = is-infimum-neg-supremum-neg-family-ℝ ( x) ( max-fin-sequence-ℝ n (neg-ℝ ∘ x)) ( is-supremum-max-fin-sequence-ℝ n (neg-ℝ ∘ x))
The minimum of a finite family is its infimum
module _ {l1 l2 : Level} (I : Inhabited-Finite-Type l1) (x : type-Inhabited-Finite-Type I → ℝ l2) where opaque unfolding min-finite-family-ℝ is-infimum-min-finite-family-ℝ : is-infimum-family-ℝ x (min-finite-family-ℝ I x) is-infimum-min-finite-family-ℝ = is-infimum-neg-supremum-neg-family-ℝ ( x) ( max-finite-family-ℝ I (neg-ℝ ∘ x)) ( is-supremum-max-finite-family-ℝ I (neg-ℝ ∘ x))
The minimum of a finite family is its greatest lower bound
module _ {l1 l2 : Level} (I : Inhabited-Finite-Type l1) (x : type-Inhabited-Finite-Type I → ℝ l2) where abstract is-greatest-lower-bound-min-finite-family-ℝ : is-greatest-lower-bound-family-of-elements-Large-Poset ( ℝ-Large-Poset) ( x) ( min-finite-family-ℝ I x) is-greatest-lower-bound-min-finite-family-ℝ = is-greatest-lower-bound-is-infimum-family-ℝ ( x) ( min-finite-family-ℝ I x) ( is-infimum-min-finite-family-ℝ I x)
External links
- Minimum at Wikidata
Recent changes
- 2025-09-02. Louis Wasserman. Maximum and minimum of finite families of real numbers (#1522).