Opposite strongly preunivalent categories
Content created by Fredrik Bakke.
Created on 2025-02-10.
Last modified on 2025-02-10.
module category-theory.opposite-strongly-preunivalent-categories where
Imports
open import category-theory.isomorphisms-in-precategories open import category-theory.opposite-precategories open import category-theory.precategories open import category-theory.strongly-preunivalent-categories open import foundation.dependent-pair-types open import foundation.embeddings open import foundation.equivalences open import foundation.functoriality-dependent-pair-types open import foundation.identity-types open import foundation.involutions open import foundation.sets open import foundation.strictly-involutive-identity-types open import foundation.subtypes open import foundation.universe-levels
Idea
Let 𝒞
be a
strongly preunivalent category,
its opposite strongly preunivalent category 𝒞ᵒᵖ
is given by reversing
every morphism.
Lemma
A precategory is strongly preunivalent if and only if the opposite is strongly preunivalent
abstract is-strongly-preunivalent-opposite-is-strongly-preunivalent-Precategory : {l1 l2 : Level} (𝒞 : Precategory l1 l2) → is-strongly-preunivalent-Precategory 𝒞 → is-strongly-preunivalent-Precategory (opposite-Precategory 𝒞) is-strongly-preunivalent-opposite-is-strongly-preunivalent-Precategory 𝒞 is-strongly-preunivalent-𝒞 x = is-set-equiv' ( Σ (obj-opposite-Precategory 𝒞) (iso-Precategory 𝒞 x)) ( equiv-tot ( λ _ → compute-iso-opposite-Precategory 𝒞 ∘e equiv-inv-iso-Precategory 𝒞)) ( is-strongly-preunivalent-𝒞 x) abstract is-strongly-preunivalent-is-strongly-preunivalent-opposite-Precategory : {l1 l2 : Level} (𝒞 : Precategory l1 l2) → is-strongly-preunivalent-Precategory (opposite-Precategory 𝒞) → is-strongly-preunivalent-Precategory 𝒞 is-strongly-preunivalent-is-strongly-preunivalent-opposite-Precategory 𝒞 = is-strongly-preunivalent-opposite-is-strongly-preunivalent-Precategory ( opposite-Precategory 𝒞)
Definitions
The opposite strongly preunivalent category
module _ {l1 l2 : Level} (𝒞 : Strongly-Preunivalent-Category l1 l2) where obj-opposite-Strongly-Preunivalent-Category : UU l1 obj-opposite-Strongly-Preunivalent-Category = obj-opposite-Precategory (precategory-Strongly-Preunivalent-Category 𝒞) hom-set-opposite-Strongly-Preunivalent-Category : (x y : obj-opposite-Strongly-Preunivalent-Category) → Set l2 hom-set-opposite-Strongly-Preunivalent-Category = hom-set-opposite-Precategory (precategory-Strongly-Preunivalent-Category 𝒞) hom-opposite-Strongly-Preunivalent-Category : (x y : obj-opposite-Strongly-Preunivalent-Category) → UU l2 hom-opposite-Strongly-Preunivalent-Category = hom-opposite-Precategory (precategory-Strongly-Preunivalent-Category 𝒞) comp-hom-opposite-Strongly-Preunivalent-Category : {x y z : obj-opposite-Strongly-Preunivalent-Category} → hom-opposite-Strongly-Preunivalent-Category y z → hom-opposite-Strongly-Preunivalent-Category x y → hom-opposite-Strongly-Preunivalent-Category x z comp-hom-opposite-Strongly-Preunivalent-Category = comp-hom-opposite-Precategory (precategory-Strongly-Preunivalent-Category 𝒞) involutive-eq-associative-comp-hom-opposite-Strongly-Preunivalent-Category : {x y z w : obj-opposite-Strongly-Preunivalent-Category} (h : hom-opposite-Strongly-Preunivalent-Category z w) (g : hom-opposite-Strongly-Preunivalent-Category y z) (f : hom-opposite-Strongly-Preunivalent-Category x y) → comp-hom-opposite-Strongly-Preunivalent-Category ( comp-hom-opposite-Strongly-Preunivalent-Category h g) ( f) =ⁱ comp-hom-opposite-Strongly-Preunivalent-Category ( h) ( comp-hom-opposite-Strongly-Preunivalent-Category g f) involutive-eq-associative-comp-hom-opposite-Strongly-Preunivalent-Category = involutive-eq-associative-comp-hom-opposite-Precategory ( precategory-Strongly-Preunivalent-Category 𝒞) associative-comp-hom-opposite-Strongly-Preunivalent-Category : {x y z w : obj-opposite-Strongly-Preunivalent-Category} (h : hom-opposite-Strongly-Preunivalent-Category z w) (g : hom-opposite-Strongly-Preunivalent-Category y z) (f : hom-opposite-Strongly-Preunivalent-Category x y) → comp-hom-opposite-Strongly-Preunivalent-Category ( comp-hom-opposite-Strongly-Preunivalent-Category h g) ( f) = comp-hom-opposite-Strongly-Preunivalent-Category ( h) ( comp-hom-opposite-Strongly-Preunivalent-Category g f) associative-comp-hom-opposite-Strongly-Preunivalent-Category = associative-comp-hom-opposite-Precategory ( precategory-Strongly-Preunivalent-Category 𝒞) id-hom-opposite-Strongly-Preunivalent-Category : {x : obj-opposite-Strongly-Preunivalent-Category} → hom-opposite-Strongly-Preunivalent-Category x x id-hom-opposite-Strongly-Preunivalent-Category = id-hom-opposite-Precategory (precategory-Strongly-Preunivalent-Category 𝒞) left-unit-law-comp-hom-opposite-Strongly-Preunivalent-Category : {x y : obj-opposite-Strongly-Preunivalent-Category} (f : hom-opposite-Strongly-Preunivalent-Category x y) → comp-hom-opposite-Strongly-Preunivalent-Category ( id-hom-opposite-Strongly-Preunivalent-Category) ( f) = f left-unit-law-comp-hom-opposite-Strongly-Preunivalent-Category = left-unit-law-comp-hom-opposite-Precategory ( precategory-Strongly-Preunivalent-Category 𝒞) right-unit-law-comp-hom-opposite-Strongly-Preunivalent-Category : {x y : obj-opposite-Strongly-Preunivalent-Category} (f : hom-opposite-Strongly-Preunivalent-Category x y) → comp-hom-opposite-Strongly-Preunivalent-Category ( f) (id-hom-opposite-Strongly-Preunivalent-Category) = ( f) right-unit-law-comp-hom-opposite-Strongly-Preunivalent-Category = right-unit-law-comp-hom-opposite-Precategory ( precategory-Strongly-Preunivalent-Category 𝒞) precategory-opposite-Strongly-Preunivalent-Category : Precategory l1 l2 precategory-opposite-Strongly-Preunivalent-Category = opposite-Precategory (precategory-Strongly-Preunivalent-Category 𝒞) opposite-Strongly-Preunivalent-Category : Strongly-Preunivalent-Category l1 l2 pr1 opposite-Strongly-Preunivalent-Category = precategory-opposite-Strongly-Preunivalent-Category pr2 opposite-Strongly-Preunivalent-Category = is-strongly-preunivalent-opposite-is-strongly-preunivalent-Precategory ( precategory-Strongly-Preunivalent-Category 𝒞) ( is-strongly-preunivalent-Strongly-Preunivalent-Category 𝒞)
Properties
The opposite construction is an involution on the type of preunivalent categories
is-involution-opposite-Strongly-Preunivalent-Category : {l1 l2 : Level} → is-involution (opposite-Strongly-Preunivalent-Category {l1} {l2}) is-involution-opposite-Strongly-Preunivalent-Category 𝒞 = eq-type-subtype ( is-strongly-preunivalent-prop-Precategory) ( is-involution-opposite-Precategory ( precategory-Strongly-Preunivalent-Category 𝒞)) involution-opposite-Strongly-Preunivalent-Category : (l1 l2 : Level) → involution (Strongly-Preunivalent-Category l1 l2) pr1 (involution-opposite-Strongly-Preunivalent-Category l1 l2) = opposite-Strongly-Preunivalent-Category pr2 (involution-opposite-Strongly-Preunivalent-Category l1 l2) = is-involution-opposite-Strongly-Preunivalent-Category is-equiv-opposite-Strongly-Preunivalent-Category : {l1 l2 : Level} → is-equiv (opposite-Strongly-Preunivalent-Category {l1} {l2}) is-equiv-opposite-Strongly-Preunivalent-Category = is-equiv-is-involution is-involution-opposite-Strongly-Preunivalent-Category equiv-opposite-Strongly-Preunivalent-Category : (l1 l2 : Level) → Strongly-Preunivalent-Category l1 l2 ≃ Strongly-Preunivalent-Category l1 l2 equiv-opposite-Strongly-Preunivalent-Category l1 l2 = equiv-involution (involution-opposite-Strongly-Preunivalent-Category l1 l2)
External links
- Precategories - opposites at 1lab
- opposite category at Lab
- Opposite category at Wikipedia
- opposite category at Wikidata
Recent changes
- 2025-02-10. Fredrik Bakke. Some extensions of the fundamental theorem of identity types (#1243).