Metrics of metric spaces are uniformly continuous
Content created by Louis Wasserman.
Created on 2025-09-09.
Last modified on 2025-09-09.
module metric-spaces.metrics-of-metric-spaces-are-uniformly-continuous where
Imports
open import elementary-number-theory.positive-rational-numbers open import elementary-number-theory.strict-inequality-rational-numbers open import foundation.action-on-identifications-binary-functions open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.identity-types open import foundation.logical-equivalences open import foundation.transport-along-identifications open import foundation.universe-levels open import metric-spaces.cartesian-products-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.metrics open import metric-spaces.metrics-of-metric-spaces open import metric-spaces.uniformly-continuous-functions-metric-spaces open import order-theory.large-posets open import real-numbers.addition-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.distance-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.nonnegative-real-numbers open import real-numbers.rational-real-numbers
Idea
If ρ
is a metric of the
metric space M
, then it is a
uniformly continuous map
from the
product metric space
M × M
to the metric space of
nonnegative real numbers.
Proof
module _ {l1 l2 l3 : Level} (M : Metric-Space l1 l2) (ρ : distance-function l3 (set-Metric-Space M)) (H : is-metric-of-Metric-Space M ρ) where private open inequality-reasoning-Large-Poset ℝ-Large-Poset ρ' : type-Metric-Space M → type-Metric-Space M → ℝ l3 ρ' x y = real-ℝ⁰⁺ (ρ x y) commutative-ρ' : (x y : type-Metric-Space M) → ρ' x y = ρ' y x commutative-ρ' x y = ap real-ℝ⁰⁺ (is-symmetric-is-metric-of-Metric-Space M ρ H x y) abstract dist-metric-leq-metric-of-Metric-Space : (x y y' : type-Metric-Space M) → dist-ℝ (real-ℝ⁰⁺ (ρ x y)) (real-ℝ⁰⁺ (ρ x y')) ≤-ℝ real-ℝ⁰⁺ (ρ y y') dist-metric-leq-metric-of-Metric-Space x y y' = leq-dist-leq-add-ℝ _ _ _ ( chain-of-inequalities ρ' x y ≤ ρ' x y' +ℝ ρ' y' y by is-triangular-is-metric-of-Metric-Space M ρ H x y' y ≤ ρ' y' y +ℝ ρ' x y' by leq-eq-ℝ _ _ (commutative-add-ℝ _ _) ≤ ρ' y y' +ℝ ρ' x y' by leq-eq-ℝ _ _ (ap-add-ℝ (commutative-ρ' y' y) refl)) ( chain-of-inequalities ρ' x y' ≤ ρ' x y +ℝ ρ' y y' by is-triangular-is-metric-of-Metric-Space M ρ H x y y' ≤ ρ' y y' +ℝ ρ' x y by leq-eq-ℝ _ _ (commutative-add-ℝ _ _)) modulus-of-uniform-continuity-metric-of-Metric-Space : ℚ⁺ → ℚ⁺ modulus-of-uniform-continuity-metric-of-Metric-Space = modulus-le-double-le-ℚ⁺ is-modulus-modulus-of-uniform-continuity-metric-of-Metric-Space : is-modulus-of-uniform-continuity-function-Metric-Space ( product-Metric-Space M M) ( metric-space-ℝ⁰⁺ l3) ( ind-Σ ρ) ( modulus-of-uniform-continuity-metric-of-Metric-Space) is-modulus-modulus-of-uniform-continuity-metric-of-Metric-Space (x , y) ε (x' , y') (Nε'xx' , Nε'yy') = let ε' = modulus-le-double-le-ℚ⁺ ε 2ε'<ε = le-double-le-modulus-le-double-le-ℚ⁺ ε in neighborhood-dist-ℝ ε (ρ' x y) (ρ' x' y') ( chain-of-inequalities dist-ℝ (ρ' x y) (ρ' x' y') ≤ dist-ℝ (ρ' x y) (ρ' x y') +ℝ dist-ℝ (ρ' x y') (ρ' x' y') by triangle-inequality-dist-ℝ _ _ _ ≤ dist-ℝ (ρ' x y) (ρ' x y') +ℝ dist-ℝ (ρ' y' x) (ρ' y' x') by leq-eq-ℝ _ _ ( ap-add-ℝ ( refl) ( ap-binary ( dist-ℝ) ( commutative-ρ' x y') ( commutative-ρ' x' y'))) ≤ ρ' y y' +ℝ ρ' x x' by preserves-leq-add-ℝ _ _ _ _ ( dist-metric-leq-metric-of-Metric-Space x y y') ( dist-metric-leq-metric-of-Metric-Space y' x x') ≤ real-ℚ⁺ ε' +ℝ real-ℚ⁺ ε' by preserves-leq-add-ℝ _ _ _ _ ( forward-implication (H ε' y y') Nε'yy') ( forward-implication (H ε' x x') Nε'xx') ≤ real-ℚ⁺ (ε' +ℚ⁺ ε') by leq-eq-ℝ _ _ (add-real-ℚ _ _) ≤ real-ℚ⁺ ε by preserves-leq-real-ℚ _ _ (leq-le-ℚ 2ε'<ε)) is-uniformly-continuous-metric-of-Metric-Space : is-uniformly-continuous-function-Metric-Space ( product-Metric-Space M M) ( metric-space-ℝ⁰⁺ l3) ( ind-Σ ρ) is-uniformly-continuous-metric-of-Metric-Space = intro-exists ( modulus-of-uniform-continuity-metric-of-Metric-Space) ( is-modulus-modulus-of-uniform-continuity-metric-of-Metric-Space) uniformly-continuous-metric-of-Metric-Space : uniformly-continuous-function-Metric-Space ( product-Metric-Space M M) ( metric-space-ℝ⁰⁺ l3) uniformly-continuous-metric-of-Metric-Space = ( ind-Σ ρ , is-uniformly-continuous-metric-of-Metric-Space)
Recent changes
- 2025-09-09. Louis Wasserman. Metrics of a metric space are uniformly continuous (#1534).