The category of simplicial sets
Content created by Fredrik Bakke.
Created on 2025-07-24.
Last modified on 2025-07-24.
module category-theory.category-of-simplicial-sets where
Imports
open import category-theory.categories open import category-theory.large-categories open import category-theory.large-precategories open import category-theory.precategories open import category-theory.presheaf-categories open import category-theory.simplex-category open import foundation.commuting-squares-of-maps open import foundation.function-types open import foundation.homotopies open import foundation.identity-types open import foundation.sets open import foundation.strictly-involutive-identity-types open import foundation.universe-levels
Idea
The large category of simplicial sets¶ is the presheaf category on the simplex category
Δᵒᵖ → Set.
To this large category, there is an associated small category of small simplicial sets, taking values in small sets.
Definitions
The large category of simplicial sets
sSet-Large-Precategory : Large-Precategory lsuc (_⊔_) sSet-Large-Precategory = presheaf-large-precategory-Precategory simplex-Precategory is-large-category-sSet-Large-Category : is-large-category-Large-Precategory sSet-Large-Precategory is-large-category-sSet-Large-Category = is-large-category-presheaf-large-category-Precategory simplex-Precategory sSet-Large-Category : Large-Category lsuc (_⊔_) sSet-Large-Category = presheaf-large-category-Precategory simplex-Precategory sSet : (l : Level) → UU (lsuc l) sSet = obj-Large-Category sSet-Large-Category module _ {l1 : Level} (X : sSet l1) where element-set-sSet : obj-simplex-Category → Set l1 element-set-sSet = element-set-presheaf-Precategory simplex-Precategory X element-sSet : obj-simplex-Category → UU l1 element-sSet X = type-Set (element-set-sSet X) action-sSet : {X Y : obj-simplex-Category} → hom-simplex-Category X Y → element-sSet Y → element-sSet X action-sSet = action-presheaf-Precategory simplex-Precategory X preserves-id-action-sSet : {X : obj-simplex-Category} → action-sSet {X} {X} (id-hom-simplex-Category X) ~ id preserves-id-action-sSet = preserves-id-action-presheaf-Precategory simplex-Precategory X preserves-comp-action-sSet : {X Y Z : obj-simplex-Category} (g : hom-simplex-Category Y Z) (f : hom-simplex-Category X Y) → action-sSet (comp-hom-simplex-Category g f) ~ action-sSet f ∘ action-sSet g preserves-comp-action-sSet = preserves-comp-action-presheaf-Precategory simplex-Precategory X hom-set-sSet : {l1 l2 : Level} (X : sSet l1) (Y : sSet l2) → Set (l1 ⊔ l2) hom-set-sSet = hom-set-Large-Category sSet-Large-Category hom-sSet : {l1 l2 : Level} (X : sSet l1) (Y : sSet l2) → UU (l1 ⊔ l2) hom-sSet = hom-Large-Category sSet-Large-Category module _ {l1 l2 : Level} (X : sSet l1) (Y : sSet l2) (h : hom-sSet X Y) where map-hom-sSet : (F : obj-simplex-Category) → element-sSet X F → element-sSet Y F map-hom-sSet = map-hom-presheaf-Precategory simplex-Precategory X Y h naturality-hom-sSet : {F E : obj-simplex-Category} (f : hom-simplex-Category F E) → coherence-square-maps ( action-sSet X f) ( map-hom-sSet E) ( map-hom-sSet F) ( action-sSet Y f) naturality-hom-sSet = naturality-hom-presheaf-Precategory simplex-Precategory X Y h comp-hom-sSet : {l1 l2 l3 : Level} (X : sSet l1) (Y : sSet l2) (Z : sSet l3) → hom-sSet Y Z → hom-sSet X Y → hom-sSet X Z comp-hom-sSet = comp-hom-presheaf-Precategory simplex-Precategory id-hom-sSet : {l1 : Level} (X : sSet l1) → hom-sSet X X id-hom-sSet = id-hom-presheaf-Precategory simplex-Precategory associative-comp-hom-sSet : {l1 l2 l3 l4 : Level} (X : sSet l1) (Y : sSet l2) (Z : sSet l3) (W : sSet l4) (h : hom-sSet Z W) (g : hom-sSet Y Z) (f : hom-sSet X Y) → comp-hom-sSet X Y W (comp-hom-sSet Y Z W h g) f = comp-hom-sSet X Z W h (comp-hom-sSet X Y Z g f) associative-comp-hom-sSet = associative-comp-hom-presheaf-Precategory simplex-Precategory involutive-eq-associative-comp-hom-sSet : {l1 l2 l3 l4 : Level} (X : sSet l1) (Y : sSet l2) (Z : sSet l3) (W : sSet l4) (h : hom-sSet Z W) (g : hom-sSet Y Z) (f : hom-sSet X Y) → comp-hom-sSet X Y W (comp-hom-sSet Y Z W h g) f =ⁱ comp-hom-sSet X Z W h (comp-hom-sSet X Y Z g f) involutive-eq-associative-comp-hom-sSet = involutive-eq-associative-comp-hom-presheaf-Precategory simplex-Precategory left-unit-law-comp-hom-sSet : {l1 l2 : Level} (X : sSet l1) (Y : sSet l2) (f : hom-sSet X Y) → comp-hom-sSet X Y Y (id-hom-sSet Y) f = f left-unit-law-comp-hom-sSet = left-unit-law-comp-hom-presheaf-Precategory simplex-Precategory right-unit-law-comp-hom-sSet : {l1 l2 : Level} (X : sSet l1) (Y : sSet l2) (f : hom-sSet X Y) → comp-hom-sSet X X Y f (id-hom-sSet X) = f right-unit-law-comp-hom-sSet = right-unit-law-comp-hom-presheaf-Precategory simplex-Precategory
The category of small simplicial sets
sSet-Precategory : (l : Level) → Precategory (lsuc l) l sSet-Precategory = precategory-Large-Category sSet-Large-Category sSet-Category : (l : Level) → Category (lsuc l) l sSet-Category = category-Large-Category sSet-Large-Category
External links
- simplicial set on Lab
Recent changes
- 2025-07-24. Fredrik Bakke. Update category theory tables and define category of simplicial sets (#1440).