Subgroups of abelian groups
Content created by Egbert Rijke, Fredrik Bakke, Jonathan Prieto-Cubides, Maša Žaucer, Julian KG, fernabnor, Gregor Perčič and louismntnu.
Created on 2022-07-09.
Last modified on 2024-04-20.
module group-theory.subgroups-abelian-groups where
Imports
open import foundation.binary-relations open import foundation.dependent-pair-types open import foundation.embeddings open import foundation.equivalence-relations open import foundation.equivalences open import foundation.identity-types open import foundation.large-binary-relations open import foundation.propositions open import foundation.sets open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.congruence-relations-abelian-groups open import group-theory.congruence-relations-groups open import group-theory.groups open import group-theory.homomorphisms-abelian-groups open import group-theory.normal-subgroups open import group-theory.semigroups open import group-theory.subgroups open import group-theory.subsets-abelian-groups open import order-theory.large-posets open import order-theory.large-preorders open import order-theory.posets open import order-theory.preorders
Definitions
Subgroups of abelian groups
module _ {l1 l2 : Level} (A : Ab l1) (P : subset-Ab l2 A) where contains-zero-subset-Ab : UU l2 contains-zero-subset-Ab = contains-unit-subset-Group (group-Ab A) P is-prop-contains-zero-subset-Ab : is-prop contains-zero-subset-Ab is-prop-contains-zero-subset-Ab = is-prop-contains-unit-subset-Group (group-Ab A) P is-closed-under-addition-subset-Ab : UU (l1 ⊔ l2) is-closed-under-addition-subset-Ab = is-closed-under-multiplication-subset-Group (group-Ab A) P is-prop-is-closed-under-addition-subset-Ab : is-prop is-closed-under-addition-subset-Ab is-prop-is-closed-under-addition-subset-Ab = is-prop-is-closed-under-multiplication-subset-Group (group-Ab A) P is-closed-under-negatives-subset-Ab : UU (l1 ⊔ l2) is-closed-under-negatives-subset-Ab = is-closed-under-inverses-subset-Group (group-Ab A) P is-prop-closed-under-neg-subset-Ab : is-prop is-closed-under-negatives-subset-Ab is-prop-closed-under-neg-subset-Ab = is-prop-is-closed-under-inverses-subset-Group (group-Ab A) P is-subgroup-Ab : UU (l1 ⊔ l2) is-subgroup-Ab = is-subgroup-subset-Group (group-Ab A) P is-prop-is-subgroup-Ab : is-prop is-subgroup-Ab is-prop-is-subgroup-Ab = is-prop-is-subgroup-subset-Group (group-Ab A) P
The type of all subgroups of an abelian group
Subgroup-Ab : (l : Level) {l1 : Level} (A : Ab l1) → UU (lsuc l ⊔ l1) Subgroup-Ab l A = Subgroup l (group-Ab A) module _ {l1 l2 : Level} (A : Ab l1) (B : Subgroup-Ab l2 A) where subset-Subgroup-Ab : subset-Ab l2 A subset-Subgroup-Ab = subset-Subgroup (group-Ab A) B type-Subgroup-Ab : UU (l1 ⊔ l2) type-Subgroup-Ab = type-Subgroup (group-Ab A) B inclusion-Subgroup-Ab : type-Subgroup-Ab → type-Ab A inclusion-Subgroup-Ab = inclusion-Subgroup (group-Ab A) B is-emb-inclusion-Subgroup-Ab : is-emb inclusion-Subgroup-Ab is-emb-inclusion-Subgroup-Ab = is-emb-inclusion-Subgroup (group-Ab A) B emb-inclusion-Subgroup-Ab : type-Subgroup-Ab ↪ type-Ab A emb-inclusion-Subgroup-Ab = emb-inclusion-Subgroup (group-Ab A) B is-in-Subgroup-Ab : type-Ab A → UU l2 is-in-Subgroup-Ab = is-in-Subgroup (group-Ab A) B is-closed-under-eq-Subgroup-Ab : {x y : type-Ab A} → is-in-Subgroup-Ab x → x = y → is-in-Subgroup-Ab y is-closed-under-eq-Subgroup-Ab = is-closed-under-eq-Subgroup (group-Ab A) B is-closed-under-eq-Subgroup-Ab' : {x y : type-Ab A} → is-in-Subgroup-Ab y → x = y → is-in-Subgroup-Ab x is-closed-under-eq-Subgroup-Ab' = is-closed-under-eq-Subgroup' (group-Ab A) B is-in-subgroup-inclusion-Subgroup-Ab : (x : type-Subgroup-Ab) → is-in-Subgroup-Ab (inclusion-Subgroup-Ab x) is-in-subgroup-inclusion-Subgroup-Ab = is-in-subgroup-inclusion-Subgroup (group-Ab A) B is-prop-is-in-Subgroup-Ab : (x : type-Ab A) → is-prop (is-in-Subgroup-Ab x) is-prop-is-in-Subgroup-Ab = is-prop-is-in-Subgroup (group-Ab A) B is-subgroup-Subgroup-Ab : is-subgroup-Ab A subset-Subgroup-Ab is-subgroup-Subgroup-Ab = is-subgroup-Subgroup (group-Ab A) B contains-zero-Subgroup-Ab : contains-zero-subset-Ab A subset-Subgroup-Ab contains-zero-Subgroup-Ab = contains-unit-Subgroup (group-Ab A) B is-closed-under-addition-Subgroup-Ab : is-closed-under-addition-subset-Ab A subset-Subgroup-Ab is-closed-under-addition-Subgroup-Ab = is-closed-under-multiplication-Subgroup (group-Ab A) B is-closed-under-negatives-Subgroup-Ab : is-closed-under-negatives-subset-Ab A subset-Subgroup-Ab is-closed-under-negatives-Subgroup-Ab = is-closed-under-inverses-Subgroup (group-Ab A) B is-in-subgroup-left-summand-Subgroup-Ab : (x y : type-Ab A) → is-in-Subgroup-Ab (add-Ab A x y) → is-in-Subgroup-Ab y → is-in-Subgroup-Ab x is-in-subgroup-left-summand-Subgroup-Ab = is-in-subgroup-left-factor-Subgroup (group-Ab A) B is-in-subgroup-right-summand-Subgroup-Ab : (x y : type-Ab A) → is-in-Subgroup-Ab (add-Ab A x y) → is-in-Subgroup-Ab x → is-in-Subgroup-Ab y is-in-subgroup-right-summand-Subgroup-Ab = is-in-subgroup-right-factor-Subgroup (group-Ab A) B is-emb-subset-Subgroup-Ab : {l1 l2 : Level} (A : Ab l1) → is-emb (subset-Subgroup-Ab {l2 = l2} A) is-emb-subset-Subgroup-Ab A = is-emb-subset-Subgroup (group-Ab A)
The underlying abelian group of a subgroup of an abelian group
module _ {l1 l2 : Level} (A : Ab l1) (B : Subgroup-Ab l2 A) where type-ab-Subgroup-Ab : UU (l1 ⊔ l2) type-ab-Subgroup-Ab = type-group-Subgroup (group-Ab A) B map-inclusion-Subgroup-Ab : type-ab-Subgroup-Ab → type-Ab A map-inclusion-Subgroup-Ab = map-inclusion-Subgroup (group-Ab A) B is-emb-incl-ab-Subgroup-Ab : is-emb map-inclusion-Subgroup-Ab is-emb-incl-ab-Subgroup-Ab = is-emb-inclusion-Subgroup (group-Ab A) B eq-subgroup-ab-eq-ab : {x y : type-ab-Subgroup-Ab} → Id (map-inclusion-Subgroup-Ab x) (map-inclusion-Subgroup-Ab y) → Id x y eq-subgroup-ab-eq-ab = eq-subgroup-eq-group (group-Ab A) B set-ab-Subgroup-Ab : Set (l1 ⊔ l2) set-ab-Subgroup-Ab = set-group-Subgroup (group-Ab A) B zero-ab-Subgroup-Ab : type-ab-Subgroup-Ab zero-ab-Subgroup-Ab = unit-Subgroup (group-Ab A) B add-ab-Subgroup-Ab : (x y : type-ab-Subgroup-Ab) → type-ab-Subgroup-Ab add-ab-Subgroup-Ab = mul-Subgroup (group-Ab A) B neg-ab-Subgroup-Ab : type-ab-Subgroup-Ab → type-ab-Subgroup-Ab neg-ab-Subgroup-Ab = inv-Subgroup (group-Ab A) B associative-add-Subgroup-Ab : ( x y z : type-ab-Subgroup-Ab) → Id ( add-ab-Subgroup-Ab (add-ab-Subgroup-Ab x y) z) ( add-ab-Subgroup-Ab x (add-ab-Subgroup-Ab y z)) associative-add-Subgroup-Ab = associative-mul-Subgroup (group-Ab A) B left-unit-law-add-Subgroup-Ab : (x : type-ab-Subgroup-Ab) → Id (add-ab-Subgroup-Ab zero-ab-Subgroup-Ab x) x left-unit-law-add-Subgroup-Ab = left-unit-law-mul-Subgroup (group-Ab A) B right-unit-law-add-Subgroup-Ab : (x : type-ab-Subgroup-Ab) → Id (add-ab-Subgroup-Ab x zero-ab-Subgroup-Ab) x right-unit-law-add-Subgroup-Ab = right-unit-law-mul-Subgroup (group-Ab A) B left-inverse-law-add-Subgroup-Ab : (x : type-ab-Subgroup-Ab) → Id ( add-ab-Subgroup-Ab (neg-ab-Subgroup-Ab x) x) ( zero-ab-Subgroup-Ab) left-inverse-law-add-Subgroup-Ab = left-inverse-law-mul-Subgroup (group-Ab A) B right-inverse-law-add-Subgroup-Ab : (x : type-ab-Subgroup-Ab) → Id ( add-ab-Subgroup-Ab x (neg-ab-Subgroup-Ab x)) ( zero-ab-Subgroup-Ab) right-inverse-law-add-Subgroup-Ab = right-inverse-law-mul-Subgroup (group-Ab A) B commutative-add-Subgroup-Ab : ( x y : type-ab-Subgroup-Ab) → Id ( add-ab-Subgroup-Ab x y) (add-ab-Subgroup-Ab y x) commutative-add-Subgroup-Ab x y = eq-subgroup-ab-eq-ab (commutative-add-Ab A (pr1 x) (pr1 y)) semigroup-Subgroup-Ab : Semigroup (l1 ⊔ l2) semigroup-Subgroup-Ab = semigroup-Subgroup (group-Ab A) B group-Subgroup-Ab : Group (l1 ⊔ l2) group-Subgroup-Ab = group-Subgroup (group-Ab A) B ab-Subgroup-Ab : Ab (l1 ⊔ l2) pr1 ab-Subgroup-Ab = group-Subgroup-Ab pr2 ab-Subgroup-Ab = commutative-add-Subgroup-Ab
The inclusion of the underlying group of a subgroup into the ambient abelian group
module _ {l1 l2 : Level} (A : Ab l1) (B : Subgroup-Ab l2 A) where preserves-add-inclusion-Subgroup-Ab : preserves-add-Ab (ab-Subgroup-Ab A B) A (map-inclusion-Subgroup-Ab A B) preserves-add-inclusion-Subgroup-Ab {x} {y} = preserves-mul-inclusion-Subgroup (group-Ab A) B {x} {y} preserves-zero-inclusion-Subgroup-Ab : preserves-zero-Ab (ab-Subgroup-Ab A B) A (map-inclusion-Subgroup-Ab A B) preserves-zero-inclusion-Subgroup-Ab = preserves-unit-inclusion-Subgroup (group-Ab A) B preserves-negatives-inclusion-Subgroup-Ab : preserves-negatives-Ab ( ab-Subgroup-Ab A B) ( A) ( map-inclusion-Subgroup-Ab A B) preserves-negatives-inclusion-Subgroup-Ab {x} = preserves-inverses-inclusion-Subgroup (group-Ab A) B {x} hom-inclusion-Subgroup-Ab : hom-Ab (ab-Subgroup-Ab A B) A hom-inclusion-Subgroup-Ab = hom-inclusion-Subgroup (group-Ab A) B
Normal subgroups of an abelian group
Normal-Subgroup-Ab : {l1 : Level} (l2 : Level) (A : Ab l1) → UU (l1 ⊔ lsuc l2) Normal-Subgroup-Ab l2 A = Normal-Subgroup l2 (group-Ab A)
Properties
Extensionality of the type of all subgroups of an abelian group
module _ {l1 l2 : Level} (A : Ab l1) (B : Subgroup-Ab l2 A) where has-same-elements-Subgroup-Ab : {l3 : Level} → Subgroup-Ab l3 A → UU (l1 ⊔ l2 ⊔ l3) has-same-elements-Subgroup-Ab = has-same-elements-Subgroup (group-Ab A) B extensionality-Subgroup-Ab : (C : Subgroup-Ab l2 A) → (B = C) ≃ has-same-elements-Subgroup-Ab C extensionality-Subgroup-Ab = extensionality-Subgroup (group-Ab A) B refl-has-same-elements-Subgroup-Ab : has-same-elements-Subgroup-Ab B refl-has-same-elements-Subgroup-Ab = refl-has-same-elements-Subgroup (group-Ab A) B has-same-elements-eq-Subgroup-Ab : (C : Subgroup-Ab l2 A) → (B = C) → has-same-elements-Subgroup-Ab C has-same-elements-eq-Subgroup-Ab = has-same-elements-eq-Subgroup (group-Ab A) B eq-has-same-elements-Subgroup-Ab : (C : Subgroup-Ab l2 A) → has-same-elements-Subgroup-Ab C → (B = C) eq-has-same-elements-Subgroup-Ab = eq-has-same-elements-Subgroup (group-Ab A) B
The containment relation of subgroups of abelian groups
leq-prop-Subgroup-Ab : {l1 l2 l3 : Level} (A : Ab l1) → Subgroup-Ab l2 A → Subgroup-Ab l3 A → Prop (l1 ⊔ l2 ⊔ l3) leq-prop-Subgroup-Ab A = leq-prop-Subgroup (group-Ab A) leq-Subgroup-Ab : {l1 l2 l3 : Level} (A : Ab l1) → Subgroup-Ab l2 A → Subgroup-Ab l3 A → UU (l1 ⊔ l2 ⊔ l3) leq-Subgroup-Ab A = leq-Subgroup (group-Ab A) refl-leq-Subgroup-Ab : {l1 : Level} (A : Ab l1) → is-reflexive-Large-Relation (λ l → Subgroup-Ab l A) (leq-Subgroup-Ab A) refl-leq-Subgroup-Ab A = refl-leq-Subgroup (group-Ab A) transitive-leq-Subgroup-Ab : {l1 : Level} (A : Ab l1) → is-transitive-Large-Relation (λ l → Subgroup-Ab l A) (leq-Subgroup-Ab A) transitive-leq-Subgroup-Ab A = transitive-leq-Subgroup (group-Ab A) antisymmetric-leq-Subgroup-Ab : {l1 : Level} (A : Ab l1) → is-antisymmetric-Large-Relation (λ l → Subgroup-Ab l A) (leq-Subgroup-Ab A) antisymmetric-leq-Subgroup-Ab A = antisymmetric-leq-Subgroup (group-Ab A) Subgroup-Ab-Large-Preorder : {l1 : Level} (A : Ab l1) → Large-Preorder (λ l2 → l1 ⊔ lsuc l2) (λ l2 l3 → l1 ⊔ l2 ⊔ l3) Subgroup-Ab-Large-Preorder A = Subgroup-Large-Preorder (group-Ab A) Subgroup-Ab-Preorder : {l1 : Level} (l2 : Level) (A : Ab l1) → Preorder (l1 ⊔ lsuc l2) (l1 ⊔ l2) Subgroup-Ab-Preorder l2 A = Subgroup-Preorder l2 (group-Ab A) Subgroup-Ab-Large-Poset : {l1 : Level} (A : Ab l1) → Large-Poset (λ l2 → l1 ⊔ lsuc l2) (λ l2 l3 → l1 ⊔ l2 ⊔ l3) Subgroup-Ab-Large-Poset A = Subgroup-Large-Poset (group-Ab A) Subgroup-Ab-Poset : {l1 : Level} (l2 : Level) (A : Ab l1) → Poset (l1 ⊔ lsuc l2) (l1 ⊔ l2) Subgroup-Ab-Poset l2 A = Subgroup-Poset l2 (group-Ab A)
Every subgroup of an abelian group is normal
module _ {l1 l2 : Level} (A : Ab l1) (B : Subgroup-Ab l2 A) where is-normal-Subgroup-Ab : is-normal-Subgroup (group-Ab A) B is-normal-Subgroup-Ab x y = is-closed-under-eq-Subgroup-Ab' A B ( is-in-subgroup-inclusion-Subgroup-Ab A B y) ( is-identity-conjugation-Ab A x (inclusion-Subgroup-Ab A B y)) normal-subgroup-Subgroup-Ab : Normal-Subgroup-Ab l2 A pr1 normal-subgroup-Subgroup-Ab = B pr2 normal-subgroup-Subgroup-Ab = is-normal-Subgroup-Ab closure-property-Subgroup-Ab : {x y z : type-Ab A} → is-in-Subgroup-Ab A B y → is-in-Subgroup-Ab A B (add-Ab A x z) → is-in-Subgroup-Ab A B (add-Ab A (add-Ab A x y) z) closure-property-Subgroup-Ab = closure-property-Normal-Subgroup ( group-Ab A) ( normal-subgroup-Subgroup-Ab) closure-property-Subgroup-Ab' : {x y z : type-Ab A} → is-in-Subgroup-Ab A B y → is-in-Subgroup-Ab A B (add-Ab A x z) → is-in-Subgroup-Ab A B (add-Ab A x (add-Ab A y z)) closure-property-Subgroup-Ab' = closure-property-Normal-Subgroup' ( group-Ab A) ( normal-subgroup-Subgroup-Ab) conjugation-Subgroup-Ab : type-Ab A → type-Subgroup-Ab A B → type-Subgroup-Ab A B conjugation-Subgroup-Ab = conjugation-Normal-Subgroup ( group-Ab A) ( normal-subgroup-Subgroup-Ab) conjugation-Subgroup-Ab' : type-Ab A → type-Subgroup-Ab A B → type-Subgroup-Ab A B conjugation-Subgroup-Ab' = conjugation-Normal-Subgroup' ( group-Ab A) ( normal-subgroup-Subgroup-Ab)
Subgroups of abelian groups are in 1-1 correspondence with congruence relations
The standard similarity relation obtained from a subgroup
module _ {l1 l2 : Level} (A : Ab l1) (B : Subgroup-Ab l2 A) where sim-congruence-Subgroup-Ab : (x y : type-Ab A) → UU l2 sim-congruence-Subgroup-Ab = sim-congruence-Normal-Subgroup ( group-Ab A) ( normal-subgroup-Subgroup-Ab A B) is-prop-sim-congruence-Subgroup-Ab : (x y : type-Ab A) → is-prop (sim-congruence-Subgroup-Ab x y) is-prop-sim-congruence-Subgroup-Ab = is-prop-sim-congruence-Normal-Subgroup ( group-Ab A) ( normal-subgroup-Subgroup-Ab A B) prop-congruence-Subgroup-Ab : (x y : type-Ab A) → Prop l2 prop-congruence-Subgroup-Ab = prop-congruence-Normal-Subgroup ( group-Ab A) ( normal-subgroup-Subgroup-Ab A B)
The left equivalence relation obtained from a subgroup
left-equivalence-relation-congruence-Subgroup-Ab : equivalence-relation l2 (type-Ab A) left-equivalence-relation-congruence-Subgroup-Ab = left-equivalence-relation-congruence-Normal-Subgroup ( group-Ab A) ( normal-subgroup-Subgroup-Ab A B) left-sim-congruence-Subgroup-Ab : type-Ab A → type-Ab A → UU l2 left-sim-congruence-Subgroup-Ab = left-sim-congruence-Normal-Subgroup ( group-Ab A) ( normal-subgroup-Subgroup-Ab A B)
The left similarity relation of a subgroup relates the same elements as the standard similarity relation
left-sim-sim-congruence-Subgroup-Ab : (x y : type-Ab A) → sim-congruence-Subgroup-Ab x y → left-sim-congruence-Subgroup-Ab x y left-sim-sim-congruence-Subgroup-Ab = left-sim-sim-congruence-Normal-Subgroup ( group-Ab A) ( normal-subgroup-Subgroup-Ab A B) sim-left-sim-congruence-Subgroup-Ab : (x y : type-Ab A) → left-sim-congruence-Subgroup-Ab x y → sim-congruence-Subgroup-Ab x y sim-left-sim-congruence-Subgroup-Ab = sim-left-sim-congruence-Normal-Subgroup ( group-Ab A) ( normal-subgroup-Subgroup-Ab A B)
The standard similarity relation is a congruence relation
refl-congruence-Subgroup-Ab : is-reflexive sim-congruence-Subgroup-Ab refl-congruence-Subgroup-Ab = refl-congruence-Normal-Subgroup ( group-Ab A) ( normal-subgroup-Subgroup-Ab A B) symmetric-congruence-Subgroup-Ab : is-symmetric sim-congruence-Subgroup-Ab symmetric-congruence-Subgroup-Ab = symmetric-congruence-Normal-Subgroup ( group-Ab A) ( normal-subgroup-Subgroup-Ab A B) transitive-congruence-Subgroup-Ab : is-transitive sim-congruence-Subgroup-Ab transitive-congruence-Subgroup-Ab = transitive-congruence-Normal-Subgroup ( group-Ab A) ( normal-subgroup-Subgroup-Ab A B) equivalence-relation-congruence-Subgroup-Ab : equivalence-relation l2 (type-Ab A) equivalence-relation-congruence-Subgroup-Ab = equivalence-relation-congruence-Normal-Subgroup ( group-Ab A) ( normal-subgroup-Subgroup-Ab A B) relate-same-elements-left-sim-congruence-Subgroup-Ab : relate-same-elements-equivalence-relation ( equivalence-relation-congruence-Subgroup-Ab) ( left-equivalence-relation-congruence-Subgroup-Ab) relate-same-elements-left-sim-congruence-Subgroup-Ab = relate-same-elements-left-sim-congruence-Normal-Subgroup ( group-Ab A) ( normal-subgroup-Subgroup-Ab A B) add-congruence-Subgroup-Ab : is-congruence-Group ( group-Ab A) ( equivalence-relation-congruence-Subgroup-Ab) add-congruence-Subgroup-Ab = mul-congruence-Normal-Subgroup ( group-Ab A) ( normal-subgroup-Subgroup-Ab A B) congruence-Subgroup-Ab : congruence-Ab l2 A congruence-Subgroup-Ab = congruence-Normal-Subgroup ( group-Ab A) ( normal-subgroup-Subgroup-Ab A B) neg-congruence-Subgroup-Ab : {x y : type-Ab A} → sim-congruence-Subgroup-Ab x y → sim-congruence-Subgroup-Ab (neg-Ab A x) (neg-Ab A y) neg-congruence-Subgroup-Ab = neg-congruence-Ab A congruence-Subgroup-Ab
The subgroup obtained from a congruence relation
module _ {l1 l2 : Level} (A : Ab l1) (R : congruence-Ab l2 A) where subset-congruence-Ab : subset-Ab l2 A subset-congruence-Ab = prop-congruence-Ab A R (zero-Ab A) is-in-subset-congruence-Ab : (type-Ab A) → UU l2 is-in-subset-congruence-Ab = is-in-subset-congruence-Group (group-Ab A) R contains-zero-subset-congruence-Ab : contains-zero-subset-Ab A subset-congruence-Ab contains-zero-subset-congruence-Ab = contains-unit-subset-congruence-Group (group-Ab A) R is-closed-under-addition-subset-congruence-Ab : is-closed-under-addition-subset-Ab A subset-congruence-Ab is-closed-under-addition-subset-congruence-Ab = is-closed-under-multiplication-subset-congruence-Group (group-Ab A) R is-closed-under-negatives-subset-congruence-Ab : is-closed-under-negatives-subset-Ab A subset-congruence-Ab is-closed-under-negatives-subset-congruence-Ab = is-closed-under-inverses-subset-congruence-Group (group-Ab A) R subgroup-congruence-Ab : Subgroup-Ab l2 A subgroup-congruence-Ab = subgroup-congruence-Group (group-Ab A) R is-normal-subgroup-congruence-Ab : is-normal-Subgroup (group-Ab A) subgroup-congruence-Ab is-normal-subgroup-congruence-Ab = is-normal-subgroup-congruence-Group (group-Ab A) R normal-subgroup-congruence-Ab : Normal-Subgroup l2 (group-Ab A) normal-subgroup-congruence-Ab = normal-subgroup-congruence-Group (group-Ab A) R
The subgroup obtained from the congruence relation of a subgroup N
is N
itself
module _ {l1 l2 : Level} (A : Ab l1) (B : Subgroup-Ab l2 A) where has-same-elements-subgroup-congruence-Ab : has-same-elements-Subgroup-Ab A ( subgroup-congruence-Ab A ( congruence-Subgroup-Ab A B)) ( B) has-same-elements-subgroup-congruence-Ab = has-same-elements-normal-subgroup-congruence-Group ( group-Ab A) ( normal-subgroup-Subgroup-Ab A B) is-retraction-subgroup-congruence-Ab : subgroup-congruence-Ab A (congruence-Subgroup-Ab A B) = B is-retraction-subgroup-congruence-Ab = eq-has-same-elements-Subgroup-Ab A ( subgroup-congruence-Ab A (congruence-Subgroup-Ab A B)) ( B) ( has-same-elements-subgroup-congruence-Ab)
The congruence relation of the subgroup obtained from a congruence relation R
is R
itself
module _ {l1 l2 : Level} (A : Ab l1) (R : congruence-Ab l2 A) where relate-same-elements-congruence-subgroup-congruence-Ab : relate-same-elements-congruence-Ab A ( congruence-Subgroup-Ab A (subgroup-congruence-Ab A R)) ( R) relate-same-elements-congruence-subgroup-congruence-Ab = relate-same-elements-congruence-normal-subgroup-congruence-Group ( group-Ab A) ( R) is-section-subgroup-congruence-Ab : congruence-Subgroup-Ab A (subgroup-congruence-Ab A R) = R is-section-subgroup-congruence-Ab = eq-relate-same-elements-congruence-Ab A ( congruence-Subgroup-Ab A (subgroup-congruence-Ab A R)) ( R) ( relate-same-elements-congruence-subgroup-congruence-Ab)
The equivalence of subgroups and congruence relations
module _ {l1 l2 : Level} (A : Ab l1) where is-equiv-congruence-Subgroup-Ab : is-equiv (congruence-Subgroup-Ab {l1} {l2} A) is-equiv-congruence-Subgroup-Ab = is-equiv-is-invertible ( subgroup-congruence-Ab A) ( is-section-subgroup-congruence-Ab A) ( is-retraction-subgroup-congruence-Ab A) equiv-congruence-Subgroup-Ab : Subgroup-Ab l2 A ≃ congruence-Ab l2 A pr1 equiv-congruence-Subgroup-Ab = congruence-Subgroup-Ab A pr2 equiv-congruence-Subgroup-Ab = is-equiv-congruence-Subgroup-Ab is-equiv-subgroup-congruence-Ab : is-equiv (subgroup-congruence-Ab {l1} {l2} A) is-equiv-subgroup-congruence-Ab = is-equiv-is-invertible ( congruence-Subgroup-Ab A) ( is-retraction-subgroup-congruence-Ab A) ( is-section-subgroup-congruence-Ab A) equiv-subgroup-congruence-Ab : congruence-Ab l2 A ≃ Subgroup-Ab l2 A pr1 equiv-subgroup-congruence-Ab = subgroup-congruence-Ab A pr2 equiv-subgroup-congruence-Ab = is-equiv-subgroup-congruence-Ab
Recent changes
- 2024-04-20. Fredrik Bakke. chore: Remove redundant parentheses in universe level expressions (#1125).
- 2023-11-24. Fredrik Bakke. The orbit category of a group (#935).
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-09-21. Egbert Rijke and Gregor Perčič. The classification of cyclic rings (#757).