Unital associative algebras over commutative rings
Content created by Louis Wasserman.
Created on 2026-02-15.
Last modified on 2026-02-15.
module commutative-algebra.unital-associative-algebras-commutative-rings where
Imports
open import commutative-algebra.algebras-commutative-rings open import commutative-algebra.associative-algebras-commutative-rings open import commutative-algebra.commutative-rings open import commutative-algebra.homomorphisms-commutative-rings open import commutative-algebra.unital-algebras-commutative-rings open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.propositions open import foundation.sets open import foundation.subtypes open import foundation.unital-binary-operations open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.central-elements-monoids open import group-theory.monoids open import group-theory.semigroups open import ring-theory.central-elements-rings open import ring-theory.homomorphisms-rings open import ring-theory.rings
Idea
An algebra over a commutative ring that is both unital and associative is itself a ring.
Definition
module _ {l1 l2 : Level} (R : Commutative-Ring l1) (A : associative-algebra-Commutative-Ring l2 R) where is-unital-prop-associative-algebra-Commutative-Ring : Prop l2 is-unital-prop-associative-algebra-Commutative-Ring = is-unital-prop-Set ( set-associative-algebra-Commutative-Ring R A) ( mul-associative-algebra-Commutative-Ring R A) is-unital-associative-algebra-Commutative-Ring : UU l2 is-unital-associative-algebra-Commutative-Ring = type-Prop is-unital-prop-associative-algebra-Commutative-Ring unital-associative-algebra-Commutative-Ring : {l1 : Level} (l2 : Level) (R : Commutative-Ring l1) → UU (l1 ⊔ lsuc l2) unital-associative-algebra-Commutative-Ring l2 R = type-subtype (is-unital-prop-associative-algebra-Commutative-Ring {l2 = l2} R)
Properties
module _ {l1 l2 : Level} (R : Commutative-Ring l1) (A : unital-associative-algebra-Commutative-Ring l2 R) where associative-algebra-unital-associative-algebra-Commutative-Ring : associative-algebra-Commutative-Ring l2 R associative-algebra-unital-associative-algebra-Commutative-Ring = pr1 A algebra-unital-associative-algebra-Commutative-Ring : algebra-Commutative-Ring l2 R algebra-unital-associative-algebra-Commutative-Ring = algebra-associative-algebra-Commutative-Ring ( R) ( associative-algebra-unital-associative-algebra-Commutative-Ring) ab-add-unital-associative-algebra-Commutative-Ring : Ab l2 ab-add-unital-associative-algebra-Commutative-Ring = ab-add-algebra-Commutative-Ring ( R) ( algebra-unital-associative-algebra-Commutative-Ring) set-unital-associative-algebra-Commutative-Ring : Set l2 set-unital-associative-algebra-Commutative-Ring = set-Ab ab-add-unital-associative-algebra-Commutative-Ring type-unital-associative-algebra-Commutative-Ring : UU l2 type-unital-associative-algebra-Commutative-Ring = type-Ab ab-add-unital-associative-algebra-Commutative-Ring add-unital-associative-algebra-Commutative-Ring : type-unital-associative-algebra-Commutative-Ring → type-unital-associative-algebra-Commutative-Ring → type-unital-associative-algebra-Commutative-Ring add-unital-associative-algebra-Commutative-Ring = add-Ab ab-add-unital-associative-algebra-Commutative-Ring mul-unital-associative-algebra-Commutative-Ring : type-unital-associative-algebra-Commutative-Ring → type-unital-associative-algebra-Commutative-Ring → type-unital-associative-algebra-Commutative-Ring mul-unital-associative-algebra-Commutative-Ring = mul-algebra-Commutative-Ring ( R) ( algebra-unital-associative-algebra-Commutative-Ring) associative-mul-unital-associative-algebra-Commutative-Ring : (x y z : type-unital-associative-algebra-Commutative-Ring) → mul-unital-associative-algebra-Commutative-Ring ( mul-unital-associative-algebra-Commutative-Ring x y) ( z) = mul-unital-associative-algebra-Commutative-Ring ( x) ( mul-unital-associative-algebra-Commutative-Ring y z) associative-mul-unital-associative-algebra-Commutative-Ring = associative-mul-associative-algebra-Commutative-Ring ( R) ( associative-algebra-unital-associative-algebra-Commutative-Ring) is-unital-mul-unital-associative-algebra-Commutative-Ring : is-unital mul-unital-associative-algebra-Commutative-Ring is-unital-mul-unital-associative-algebra-Commutative-Ring = pr2 A unital-algebra-unital-associative-algebra-Commutative-Ring : unital-algebra-Commutative-Ring l2 R unital-algebra-unital-associative-algebra-Commutative-Ring = ( algebra-unital-associative-algebra-Commutative-Ring , is-unital-mul-unital-associative-algebra-Commutative-Ring) semigroup-mul-unital-associative-algebra-Commutative-Ring : Semigroup l2 semigroup-mul-unital-associative-algebra-Commutative-Ring = semigroup-mul-associative-algebra-Commutative-Ring ( R) ( associative-algebra-unital-associative-algebra-Commutative-Ring) monoid-mul-unital-associative-algebra-Commutative-Ring : Monoid l2 monoid-mul-unital-associative-algebra-Commutative-Ring = ( semigroup-mul-unital-associative-algebra-Commutative-Ring , is-unital-mul-unital-associative-algebra-Commutative-Ring) one-unital-associative-algebra-Commutative-Ring : type-unital-associative-algebra-Commutative-Ring one-unital-associative-algebra-Commutative-Ring = unit-Monoid monoid-mul-unital-associative-algebra-Commutative-Ring scalar-mul-unital-associative-algebra-Commutative-Ring : type-Commutative-Ring R → type-unital-associative-algebra-Commutative-Ring → type-unital-associative-algebra-Commutative-Ring scalar-mul-unital-associative-algebra-Commutative-Ring = scalar-mul-algebra-Commutative-Ring ( R) ( algebra-unital-associative-algebra-Commutative-Ring) left-distributive-mul-add-unital-associative-algebra-Commutative-Ring : (x y z : type-unital-associative-algebra-Commutative-Ring) → mul-unital-associative-algebra-Commutative-Ring ( x) ( add-unital-associative-algebra-Commutative-Ring y z) = add-unital-associative-algebra-Commutative-Ring ( mul-unital-associative-algebra-Commutative-Ring x y) ( mul-unital-associative-algebra-Commutative-Ring x z) left-distributive-mul-add-unital-associative-algebra-Commutative-Ring = left-distributive-mul-add-algebra-Commutative-Ring ( R) ( algebra-unital-associative-algebra-Commutative-Ring) right-distributive-mul-add-unital-associative-algebra-Commutative-Ring : (x y z : type-unital-associative-algebra-Commutative-Ring) → mul-unital-associative-algebra-Commutative-Ring ( add-unital-associative-algebra-Commutative-Ring x y) ( z) = add-unital-associative-algebra-Commutative-Ring ( mul-unital-associative-algebra-Commutative-Ring x z) ( mul-unital-associative-algebra-Commutative-Ring y z) right-distributive-mul-add-unital-associative-algebra-Commutative-Ring = right-distributive-mul-add-algebra-Commutative-Ring ( R) ( algebra-unital-associative-algebra-Commutative-Ring) left-unit-law-mul-unital-associative-algebra-Commutative-Ring : (x : type-unital-associative-algebra-Commutative-Ring) → mul-unital-associative-algebra-Commutative-Ring ( one-unital-associative-algebra-Commutative-Ring) ( x) = x left-unit-law-mul-unital-associative-algebra-Commutative-Ring = left-unit-law-mul-Monoid ( monoid-mul-unital-associative-algebra-Commutative-Ring) left-unit-law-scalar-mul-unital-associative-algebra-Commutative-Ring : (x : type-unital-associative-algebra-Commutative-Ring) → scalar-mul-unital-associative-algebra-Commutative-Ring ( one-Commutative-Ring R) ( x) = x left-unit-law-scalar-mul-unital-associative-algebra-Commutative-Ring = left-unit-law-scalar-mul-algebra-Commutative-Ring ( R) ( algebra-unital-associative-algebra-Commutative-Ring) right-distributive-scalar-mul-add-unital-associative-algebra-Commutative-Ring : (r s : type-Commutative-Ring R) → (x : type-unital-associative-algebra-Commutative-Ring) → scalar-mul-unital-associative-algebra-Commutative-Ring ( add-Commutative-Ring R r s) ( x) = add-unital-associative-algebra-Commutative-Ring ( scalar-mul-unital-associative-algebra-Commutative-Ring r x) ( scalar-mul-unital-associative-algebra-Commutative-Ring s x) right-distributive-scalar-mul-add-unital-associative-algebra-Commutative-Ring = right-distributive-scalar-mul-add-algebra-Commutative-Ring ( R) ( algebra-unital-associative-algebra-Commutative-Ring) associative-scalar-mul-unital-associative-algebra-Commutative-Ring : (r s : type-Commutative-Ring R) → (x : type-unital-associative-algebra-Commutative-Ring) → scalar-mul-unital-associative-algebra-Commutative-Ring ( mul-Commutative-Ring R r s) ( x) = scalar-mul-unital-associative-algebra-Commutative-Ring ( r) ( scalar-mul-unital-associative-algebra-Commutative-Ring s x) associative-scalar-mul-unital-associative-algebra-Commutative-Ring = associative-scalar-mul-algebra-Commutative-Ring ( R) ( algebra-unital-associative-algebra-Commutative-Ring) associative-scalar-mul-mul-unital-associative-algebra-Commutative-Ring : (r : type-Commutative-Ring R) → (x y : type-unital-associative-algebra-Commutative-Ring) → mul-unital-associative-algebra-Commutative-Ring ( scalar-mul-unital-associative-algebra-Commutative-Ring r x) ( y) = scalar-mul-unital-associative-algebra-Commutative-Ring ( r) ( mul-unital-associative-algebra-Commutative-Ring x y) associative-scalar-mul-mul-unital-associative-algebra-Commutative-Ring = associative-scalar-mul-mul-algebra-Commutative-Ring ( R) ( algebra-unital-associative-algebra-Commutative-Ring) left-swap-scalar-mul-mul-unital-associative-algebra-Commutative-Ring : (r : type-Commutative-Ring R) → (x y : type-unital-associative-algebra-Commutative-Ring) → scalar-mul-unital-associative-algebra-Commutative-Ring ( r) ( mul-unital-associative-algebra-Commutative-Ring x y) = mul-unital-associative-algebra-Commutative-Ring ( x) ( scalar-mul-unital-associative-algebra-Commutative-Ring r y) left-swap-scalar-mul-mul-unital-associative-algebra-Commutative-Ring = left-swap-scalar-mul-mul-algebra-Commutative-Ring ( R) ( algebra-unital-associative-algebra-Commutative-Ring)
A unital associative algebra is a ring
module _ {l1 l2 : Level} (R : Commutative-Ring l1) (A : unital-associative-algebra-Commutative-Ring l2 R) where ring-unital-associative-algebra-Commutative-Ring : Ring l2 ring-unital-associative-algebra-Commutative-Ring = ( ab-add-unital-associative-algebra-Commutative-Ring R A , ( mul-unital-associative-algebra-Commutative-Ring R A , associative-mul-unital-associative-algebra-Commutative-Ring R A) , is-unital-mul-unital-associative-algebra-Commutative-Ring R A , left-distributive-mul-add-unital-associative-algebra-Commutative-Ring ( R) ( A) , right-distributive-mul-add-unital-associative-algebra-Commutative-Ring ( R) ( A))
Given a unital associative algebra A over R, the map r ↦ r · 1 is a ring homomorphism from R to A
module _ {l1 l2 : Level} (R : Commutative-Ring l1) (A : unital-associative-algebra-Commutative-Ring l2 R) where map-hom-ring-unital-associative-algebra-Commutative-Ring : type-Commutative-Ring R → type-unital-associative-algebra-Commutative-Ring R A map-hom-ring-unital-associative-algebra-Commutative-Ring r = scalar-mul-unital-associative-algebra-Commutative-Ring R A ( r) ( one-unital-associative-algebra-Commutative-Ring R A) abstract preserves-one-hom-ring-unital-associative-algebra-Commutative-Ring : map-hom-ring-unital-associative-algebra-Commutative-Ring ( one-Commutative-Ring R) = one-unital-associative-algebra-Commutative-Ring R A preserves-one-hom-ring-unital-associative-algebra-Commutative-Ring = left-unit-law-scalar-mul-unital-associative-algebra-Commutative-Ring ( R) ( A) ( one-unital-associative-algebra-Commutative-Ring R A) preserves-add-hom-ring-unital-associative-algebra-Commutative-Ring : (r s : type-Commutative-Ring R) → map-hom-ring-unital-associative-algebra-Commutative-Ring ( add-Commutative-Ring R r s) = add-unital-associative-algebra-Commutative-Ring R A ( map-hom-ring-unital-associative-algebra-Commutative-Ring r) ( map-hom-ring-unital-associative-algebra-Commutative-Ring s) preserves-add-hom-ring-unital-associative-algebra-Commutative-Ring r s = right-distributive-scalar-mul-add-unital-associative-algebra-Commutative-Ring ( R) ( A) ( r) ( s) ( one-unital-associative-algebra-Commutative-Ring R A) preserves-mul-hom-ring-unital-associative-algebra-Commutative-Ring : (r s : type-Commutative-Ring R) → map-hom-ring-unital-associative-algebra-Commutative-Ring ( mul-Commutative-Ring R r s) = mul-unital-associative-algebra-Commutative-Ring R A ( map-hom-ring-unital-associative-algebra-Commutative-Ring r) ( map-hom-ring-unital-associative-algebra-Commutative-Ring s) preserves-mul-hom-ring-unital-associative-algebra-Commutative-Ring r s = inv ( equational-reasoning mul-unital-associative-algebra-Commutative-Ring R A ( map-hom-ring-unital-associative-algebra-Commutative-Ring r) ( map-hom-ring-unital-associative-algebra-Commutative-Ring s) = scalar-mul-unital-associative-algebra-Commutative-Ring R A ( r) ( mul-unital-associative-algebra-Commutative-Ring R A ( one-unital-associative-algebra-Commutative-Ring R A) ( map-hom-ring-unital-associative-algebra-Commutative-Ring s)) by associative-scalar-mul-mul-unital-associative-algebra-Commutative-Ring ( R) ( A) ( _) ( _) ( _) = scalar-mul-unital-associative-algebra-Commutative-Ring R A ( r) ( map-hom-ring-unital-associative-algebra-Commutative-Ring s) by ap ( scalar-mul-unital-associative-algebra-Commutative-Ring R A r) ( left-unit-law-mul-unital-associative-algebra-Commutative-Ring ( R) ( A) ( _)) = map-hom-ring-unital-associative-algebra-Commutative-Ring ( mul-Commutative-Ring R r s) by inv ( associative-scalar-mul-unital-associative-algebra-Commutative-Ring ( R) ( A) ( r) ( s) ( one-unital-associative-algebra-Commutative-Ring R A))) hom-ring-unital-associative-algebra-Commutative-Ring : hom-Ring ( ring-Commutative-Ring R) ( ring-unital-associative-algebra-Commutative-Ring R A) hom-ring-unital-associative-algebra-Commutative-Ring = ( ( map-hom-ring-unital-associative-algebra-Commutative-Ring , preserves-add-hom-ring-unital-associative-algebra-Commutative-Ring ( _) ( _)) , preserves-mul-hom-ring-unital-associative-algebra-Commutative-Ring _ _ , preserves-one-hom-ring-unital-associative-algebra-Commutative-Ring)
Given a unital associative algebra A over R, the ring homomorphism from R to A maps elements into the center of A
module _ {l1 l2 : Level} (R : Commutative-Ring l1) (A : unital-associative-algebra-Commutative-Ring l2 R) where abstract is-central-map-hom-ring-unital-associative-algebra-Commutative-Ring : (r : type-Commutative-Ring R) → is-central-element-Ring ( ring-unital-associative-algebra-Commutative-Ring R A) ( map-hom-ring-unital-associative-algebra-Commutative-Ring R A r) is-central-map-hom-ring-unital-associative-algebra-Commutative-Ring r x = equational-reasoning mul-unital-associative-algebra-Commutative-Ring R A ( map-hom-ring-unital-associative-algebra-Commutative-Ring R A r) ( x) = scalar-mul-unital-associative-algebra-Commutative-Ring R A ( r) ( mul-unital-associative-algebra-Commutative-Ring R A ( one-unital-associative-algebra-Commutative-Ring R A) ( x)) by associative-scalar-mul-mul-unital-associative-algebra-Commutative-Ring ( R) ( A) ( r) ( one-unital-associative-algebra-Commutative-Ring R A) ( x) = scalar-mul-unital-associative-algebra-Commutative-Ring R A ( r) ( mul-unital-associative-algebra-Commutative-Ring R A ( x) ( one-unital-associative-algebra-Commutative-Ring R A)) by ap ( scalar-mul-unital-associative-algebra-Commutative-Ring R A r) ( is-central-element-unit-Monoid ( monoid-mul-unital-associative-algebra-Commutative-Ring R A) ( x)) = mul-unital-associative-algebra-Commutative-Ring R A ( x) ( map-hom-ring-unital-associative-algebra-Commutative-Ring R A r) by left-swap-scalar-mul-mul-unital-associative-algebra-Commutative-Ring ( R) ( A) ( r) ( x) ( one-unital-associative-algebra-Commutative-Ring R A)
Recent changes
- 2026-02-15. Louis Wasserman. Unital and associative algebras over a commutative ring (#1843).