The infinite complex projective space
Content created by Fredrik Bakke, Jonathan Prieto-Cubides and Egbert Rijke.
Created on 2022-05-16.
Last modified on 2023-09-10.
module synthetic-homotopy-theory.infinite-complex-projective-space where
Imports
open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.set-truncations open import foundation.universe-levels open import synthetic-homotopy-theory.circle
Definitions
ℂP∞
as the 1
-connected component of the universe at the circle
ℂP∞ : UU (lsuc lzero) ℂP∞ = Σ (UU lzero) (λ X → type-trunc-Set (𝕊¹ ≃ X)) point-ℂP∞ : ℂP∞ pr1 point-ℂP∞ = 𝕊¹ pr2 point-ℂP∞ = unit-trunc-Set id-equiv
ℂP∞
as the 2
-truncation of the 2
-sphere
This remains to be defined. #742
Recent changes
- 2023-09-10. Fredrik Bakke. Link issues to unfinished sections (#732).
- 2023-05-28. Fredrik Bakke. Enforce even indentation and automate some conventions (#635).
- 2023-05-03. Fredrik Bakke. Define the smash product of pointed types and refactor pointed types (#583).
- 2023-03-10. Fredrik Bakke. Additions to
fix-import
(#497). - 2023-03-09. Jonathan Prieto-Cubides. Add hooks (#495).