Kuratowski finite sets
Content created by Fredrik Bakke.
Created on 2024-08-22.
Last modified on 2025-01-07.
module univalent-combinatorics.kuratowski-finite-sets where
Imports
open import elementary-number-theory.natural-numbers open import foundation.decidable-equality open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.propositional-truncations open import foundation.propositions open import foundation.sets open import foundation.surjective-maps open import foundation.universe-levels open import univalent-combinatorics.equality-finite-types open import univalent-combinatorics.finite-types open import univalent-combinatorics.image-of-maps open import univalent-combinatorics.standard-finite-types
Idea
A Kuratowski finite set¶ is a
set X
for which there exists a
surjection into X
from a standard finite
type. In other words, the Kuratowski finite set are the
set-quotient of a
standard finite type.
Definition
is-kuratowski-finite-set-Prop : {l : Level} → Set l → Prop l is-kuratowski-finite-set-Prop X = exists-structure-Prop ℕ (λ n → Fin n ↠ type-Set X) is-kuratowski-finite-set : {l : Level} → Set l → UU l is-kuratowski-finite-set X = type-Prop (is-kuratowski-finite-set-Prop X) 𝔽-Kuratowski : (l : Level) → UU (lsuc l) 𝔽-Kuratowski l = Σ (Set l) is-kuratowski-finite-set module _ {l : Level} (X : 𝔽-Kuratowski l) where set-𝔽-Kuratowski : Set l set-𝔽-Kuratowski = pr1 X type-𝔽-Kuratowski : UU l type-𝔽-Kuratowski = type-Set set-𝔽-Kuratowski is-set-type-𝔽-Kuratowski : is-set type-𝔽-Kuratowski is-set-type-𝔽-Kuratowski = is-set-type-Set set-𝔽-Kuratowski is-kuratowski-finite-set-𝔽-Kuratowski : is-kuratowski-finite-set set-𝔽-Kuratowski is-kuratowski-finite-set-𝔽-Kuratowski = pr2 X
Properties
A Kuratowski finite set is finite if and only if it has decidable equality
is-finite-has-decidable-equality-type-𝔽-Kuratowski : {l : Level} (X : 𝔽-Kuratowski l) → has-decidable-equality (type-𝔽-Kuratowski X) → is-finite (type-𝔽-Kuratowski X) is-finite-has-decidable-equality-type-𝔽-Kuratowski X H = apply-universal-property-trunc-Prop ( is-kuratowski-finite-set-𝔽-Kuratowski X) ( is-finite-Prop (type-𝔽-Kuratowski X)) ( λ (n , f , s) → is-finite-codomain (is-finite-Fin n) s H) has-decidable-equality-is-finite-type-𝔽-Kuratowski : {l : Level} (X : 𝔽-Kuratowski l) → is-finite (type-𝔽-Kuratowski X) → has-decidable-equality (type-𝔽-Kuratowski X) has-decidable-equality-is-finite-type-𝔽-Kuratowski X = has-decidable-equality-is-finite
Kuratowski finite sets are Markovian
This remains to be formalized. (Markovian types)
See also
External links
- Finiteness in Sheaf Topoi, blog post by Chris Grossack
Fin.Kuratowski
at TypeTopology- finite set at Lab
- finite object at Lab
- Finite set at Wikipedia
Recent changes
- 2025-01-07. Fredrik Bakke. Logic (#1226).
- 2024-09-23. Fredrik Bakke. Some typos, wording improvements, and brief prose additions (#1186).
- 2024-08-22. Fredrik Bakke. Cleanup of finite types (#1166).