Inequality of arithmetic and geometric means on the rational numbers
Content created by Louis Wasserman.
Created on 2025-04-25.
Last modified on 2025-04-25.
{-# OPTIONS --lossy-unification #-} module elementary-number-theory.inequality-arithmetic-geometric-means-rational-numbers where
Imports
open import elementary-number-theory.addition-rational-numbers open import elementary-number-theory.additive-group-of-rational-numbers open import elementary-number-theory.difference-rational-numbers open import elementary-number-theory.inequality-rational-numbers open import elementary-number-theory.integers open import elementary-number-theory.multiplication-rational-numbers open import elementary-number-theory.nonnegative-rational-numbers open import elementary-number-theory.rational-numbers open import elementary-number-theory.squares-rational-numbers open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.logical-equivalences open import foundation.transport-along-identifications
Idea
The arithmetic mean-geometric mean inequality¶ states that , where that square root is defined. We cannot take arbitrary square roots in rational numbers, but we can prove the equivalent inequality that for all rational numbers.
Proof
abstract eq-square-sum-minus-four-mul-ℚ-square-diff : (x y : ℚ) → square-ℚ (x +ℚ y) -ℚ rational-ℕ 4 *ℚ (x *ℚ y) = square-ℚ (x -ℚ y) eq-square-sum-minus-four-mul-ℚ-square-diff x y = equational-reasoning square-ℚ (x +ℚ y) -ℚ rational-ℕ 4 *ℚ (x *ℚ y) = ((square-ℚ x +ℚ rational-ℕ 2 *ℚ (x *ℚ y)) +ℚ square-ℚ y) -ℚ rational-ℕ 4 *ℚ (x *ℚ y) by ap ( _-ℚ rational-ℕ 4 *ℚ (x *ℚ y)) ( square-add-ℚ x y) = ((square-ℚ x +ℚ square-ℚ y) +ℚ rational-ℕ 2 *ℚ (x *ℚ y)) -ℚ rational-ℕ 4 *ℚ (x *ℚ y) by ap ( _-ℚ rational-ℕ 4 *ℚ (x *ℚ y)) ( right-swap-add-ℚ ( square-ℚ x) ( rational-ℕ 2 *ℚ (x *ℚ y)) ( square-ℚ y)) = (square-ℚ x +ℚ square-ℚ y) +ℚ (rational-ℕ 2 *ℚ (x *ℚ y) -ℚ rational-ℕ 4 *ℚ (x *ℚ y)) by associative-add-ℚ ( square-ℚ x +ℚ square-ℚ y) ( rational-ℕ 2 *ℚ (x *ℚ y)) ( neg-ℚ (rational-ℕ 4 *ℚ (x *ℚ y))) = (square-ℚ x +ℚ square-ℚ y) +ℚ ((rational-ℕ 2 -ℚ rational-ℕ 4) *ℚ (x *ℚ y)) by ap ( square-ℚ x +ℚ square-ℚ y +ℚ_) ( inv (right-distributive-mul-diff-ℚ _ _ _)) = (square-ℚ x +ℚ square-ℚ y) +ℚ (rational-ℤ (neg-ℤ (int-ℕ 2)) *ℚ (x *ℚ y)) by ap ( square-ℚ x +ℚ square-ℚ y +ℚ_) ( ap ( _*ℚ (x *ℚ y)) (diff-rational-ℤ _ _)) = (square-ℚ x +ℚ square-ℚ y) -ℚ (rational-ℕ 2 *ℚ (x *ℚ y)) by ap ( square-ℚ x +ℚ square-ℚ y +ℚ_) ( left-negative-law-mul-ℚ _ _) = square-ℚ x -ℚ (rational-ℕ 2 *ℚ (x *ℚ y)) +ℚ square-ℚ y by right-swap-add-ℚ ( square-ℚ x) ( square-ℚ y) ( neg-ℚ (rational-ℕ 2 *ℚ (x *ℚ y))) = square-ℚ (x -ℚ y) by inv (square-diff-ℚ x y) leq-geometric-mean-arithmetic-mean-ℚ : (x y : ℚ) → leq-ℚ (rational-ℕ 4 *ℚ (x *ℚ y)) (square-ℚ (x +ℚ y)) leq-geometric-mean-arithmetic-mean-ℚ x y = leq-is-nonnegative-diff-ℚ ( rational-ℕ 4 *ℚ (x *ℚ y)) ( square-ℚ (x +ℚ y)) ( inv-tr ( is-nonnegative-ℚ) ( eq-square-sum-minus-four-mul-ℚ-square-diff x y) ( is-nonnegative-square-ℚ (x -ℚ y)))
The arithmetic and geometric means of x
and y
are equal if and only if x = y
abstract eq-eq-geometric-mean-arithmetic-mean-ℚ : (x y : ℚ) → rational-ℕ 4 *ℚ (x *ℚ y) = square-ℚ (x +ℚ y) → x = y eq-eq-geometric-mean-arithmetic-mean-ℚ x y 4xy=⟨x+y⟩² = eq-is-zero-diff-ℚ ( x) ( y) ( is-zero-square-is-zero-ℚ ( x -ℚ y) ( equational-reasoning square-ℚ (x -ℚ y) = square-ℚ (x +ℚ y) -ℚ rational-ℕ 4 *ℚ (x *ℚ y) by inv (eq-square-sum-minus-four-mul-ℚ-square-diff x y) = zero-ℚ by is-zero-diff-ℚ (inv 4xy=⟨x+y⟩²))) eq-geometric-mean-arithmetic-mean-eq-ℚ : (x y : ℚ) → x = y → rational-ℕ 4 *ℚ (x *ℚ y) = square-ℚ (x +ℚ y) eq-geometric-mean-arithmetic-mean-eq-ℚ x .x refl = inv ( equational-reasoning square-ℚ (x +ℚ x) = square-ℚ (rational-ℕ 2 *ℚ x) by ap square-ℚ (inv (mul-two-ℚ x)) = square-ℚ (rational-ℕ 2) *ℚ square-ℚ x by distributive-square-mul-ℚ _ _ = rational-ℕ 4 *ℚ square-ℚ x by ap (_*ℚ square-ℚ x) (mul-rational-ℕ 2 2)) eq-geometric-mean-arithmetic-mean-iff-eq-ℚ : (x y : ℚ) → (rational-ℕ 4 *ℚ (x *ℚ y) = square-ℚ (x +ℚ y)) ↔ (x = y) pr1 (eq-geometric-mean-arithmetic-mean-iff-eq-ℚ x y) = eq-eq-geometric-mean-arithmetic-mean-ℚ x y pr2 (eq-geometric-mean-arithmetic-mean-iff-eq-ℚ x y) = eq-geometric-mean-arithmetic-mean-eq-ℚ x y
External links
- Am-gm inequality at Wikidata
Recent changes
- 2025-04-25. Louis Wasserman. Arithmetic-geometric mean inequality on the rational numbers (#1406).