Inequality of arithmetic and geometric means on the rational numbers
Content created by Louis Wasserman.
Created on 2025-04-25.
Last modified on 2025-07-25.
{-# OPTIONS --lossy-unification #-} module elementary-number-theory.inequality-arithmetic-geometric-means-rational-numbers where
Imports
open import elementary-number-theory.addition-rational-numbers open import elementary-number-theory.additive-group-of-rational-numbers open import elementary-number-theory.difference-rational-numbers open import elementary-number-theory.inequality-rational-numbers open import elementary-number-theory.integers open import elementary-number-theory.multiplication-rational-numbers open import elementary-number-theory.nonnegative-rational-numbers open import elementary-number-theory.rational-numbers open import elementary-number-theory.squares-rational-numbers open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.logical-equivalences open import foundation.transport-along-identifications
Idea
The arithmetic mean-geometric mean inequality¶ states that , where that square root is defined. We cannot take arbitrary square roots in rational numbers, but we can prove the equivalent inequality that for all rational numbers.
Proof
opaque unfolding mul-ℚ unfolding neg-ℚ eq-square-sum-minus-four-mul-ℚ-square-diff : (x y : ℚ) → square-ℚ (x +ℚ y) -ℚ rational-ℕ 4 *ℚ (x *ℚ y) = square-ℚ (x -ℚ y) eq-square-sum-minus-four-mul-ℚ-square-diff x y = equational-reasoning square-ℚ (x +ℚ y) -ℚ rational-ℕ 4 *ℚ (x *ℚ y) = ((square-ℚ x +ℚ rational-ℕ 2 *ℚ (x *ℚ y)) +ℚ square-ℚ y) -ℚ rational-ℕ 4 *ℚ (x *ℚ y) by ap ( _-ℚ rational-ℕ 4 *ℚ (x *ℚ y)) ( square-add-ℚ x y) = ((square-ℚ x +ℚ square-ℚ y) +ℚ rational-ℕ 2 *ℚ (x *ℚ y)) -ℚ rational-ℕ 4 *ℚ (x *ℚ y) by ap ( _-ℚ rational-ℕ 4 *ℚ (x *ℚ y)) ( right-swap-add-ℚ ( square-ℚ x) ( rational-ℕ 2 *ℚ (x *ℚ y)) ( square-ℚ y)) = (square-ℚ x +ℚ square-ℚ y) +ℚ (rational-ℕ 2 *ℚ (x *ℚ y) -ℚ rational-ℕ 4 *ℚ (x *ℚ y)) by associative-add-ℚ ( square-ℚ x +ℚ square-ℚ y) ( rational-ℕ 2 *ℚ (x *ℚ y)) ( neg-ℚ (rational-ℕ 4 *ℚ (x *ℚ y))) = (square-ℚ x +ℚ square-ℚ y) +ℚ ((rational-ℕ 2 -ℚ rational-ℕ 4) *ℚ (x *ℚ y)) by ap ( square-ℚ x +ℚ square-ℚ y +ℚ_) ( inv (right-distributive-mul-diff-ℚ _ _ _)) = (square-ℚ x +ℚ square-ℚ y) +ℚ (rational-ℤ (neg-ℤ (int-ℕ 2)) *ℚ (x *ℚ y)) by ap ( square-ℚ x +ℚ square-ℚ y +ℚ_) ( ap ( _*ℚ (x *ℚ y)) (diff-rational-ℤ _ _)) = (square-ℚ x +ℚ square-ℚ y) -ℚ (rational-ℕ 2 *ℚ (x *ℚ y)) by ap ( square-ℚ x +ℚ square-ℚ y +ℚ_) ( left-negative-law-mul-ℚ _ _) = square-ℚ x -ℚ (rational-ℕ 2 *ℚ (x *ℚ y)) +ℚ square-ℚ y by right-swap-add-ℚ ( square-ℚ x) ( square-ℚ y) ( neg-ℚ (rational-ℕ 2 *ℚ (x *ℚ y))) = square-ℚ (x -ℚ y) by inv (square-diff-ℚ x y) leq-geometric-mean-arithmetic-mean-ℚ : (x y : ℚ) → leq-ℚ (rational-ℕ 4 *ℚ (x *ℚ y)) (square-ℚ (x +ℚ y)) leq-geometric-mean-arithmetic-mean-ℚ x y = leq-is-nonnegative-diff-ℚ ( rational-ℕ 4 *ℚ (x *ℚ y)) ( square-ℚ (x +ℚ y)) ( inv-tr ( is-nonnegative-ℚ) ( eq-square-sum-minus-four-mul-ℚ-square-diff x y) ( is-nonnegative-square-ℚ (x -ℚ y)))
The arithmetic and geometric means of x
and y
are equal if and only if x = y
abstract eq-eq-geometric-mean-arithmetic-mean-ℚ : (x y : ℚ) → rational-ℕ 4 *ℚ (x *ℚ y) = square-ℚ (x +ℚ y) → x = y eq-eq-geometric-mean-arithmetic-mean-ℚ x y 4xy=⟨x+y⟩² = eq-is-zero-diff-ℚ ( x) ( y) ( is-zero-square-is-zero-ℚ ( x -ℚ y) ( equational-reasoning square-ℚ (x -ℚ y) = square-ℚ (x +ℚ y) -ℚ rational-ℕ 4 *ℚ (x *ℚ y) by inv (eq-square-sum-minus-four-mul-ℚ-square-diff x y) = zero-ℚ by is-zero-diff-ℚ (inv 4xy=⟨x+y⟩²))) eq-geometric-mean-arithmetic-mean-eq-ℚ : (x y : ℚ) → x = y → rational-ℕ 4 *ℚ (x *ℚ y) = square-ℚ (x +ℚ y) eq-geometric-mean-arithmetic-mean-eq-ℚ x .x refl = inv ( equational-reasoning square-ℚ (x +ℚ x) = square-ℚ (rational-ℕ 2 *ℚ x) by ap square-ℚ (inv (mul-two-ℚ x)) = square-ℚ (rational-ℕ 2) *ℚ square-ℚ x by distributive-square-mul-ℚ _ _ = rational-ℕ 4 *ℚ square-ℚ x by ap (_*ℚ square-ℚ x) (mul-rational-ℕ 2 2)) eq-geometric-mean-arithmetic-mean-iff-eq-ℚ : (x y : ℚ) → (rational-ℕ 4 *ℚ (x *ℚ y) = square-ℚ (x +ℚ y)) ↔ (x = y) pr1 (eq-geometric-mean-arithmetic-mean-iff-eq-ℚ x y) = eq-eq-geometric-mean-arithmetic-mean-ℚ x y pr2 (eq-geometric-mean-arithmetic-mean-iff-eq-ℚ x y) = eq-geometric-mean-arithmetic-mean-eq-ℚ x y
External links
- Am-gm inequality at Wikidata
Recent changes
- 2025-07-25. Louis Wasserman. Make rational arithmetic opaque (#1457).
- 2025-04-25. Louis Wasserman. Arithmetic-geometric mean inequality on the rational numbers (#1406).