Finite Σ-decompositions of finite types

Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides and Victor Blanchi.

Created on 2023-02-15.
Last modified on 2024-04-11.

module univalent-combinatorics.sigma-decompositions where

open import foundation.sigma-decompositions public
Imports
open import foundation.cartesian-product-types
open import foundation.dependent-universal-property-equivalences
open import foundation.embeddings
open import foundation.equivalences
open import foundation.functoriality-dependent-function-types
open import foundation.functoriality-dependent-pair-types
open import foundation.homotopies
open import foundation.identity-types
open import foundation.inhabited-types
open import foundation.logical-equivalences
open import foundation.precomposition-functions
open import foundation.propositions
open import foundation.relaxed-sigma-decompositions
open import foundation.subtypes
open import foundation.surjective-maps
open import foundation.type-arithmetic-dependent-pair-types
open import foundation.type-theoretic-principle-of-choice
open import foundation.universe-levels

open import univalent-combinatorics.decidable-equivalence-relations
open import univalent-combinatorics.dependent-pair-types
open import univalent-combinatorics.finite-types
open import univalent-combinatorics.inhabited-finite-types
open import univalent-combinatorics.type-duality

Definition

Σ-Decomposition-𝔽 :
  {l : Level}  (l1 l2 : Level)  𝔽 l  UU (l  lsuc l1  lsuc l2)
Σ-Decomposition-𝔽 l1 l2 A =
  Σ ( 𝔽 l1)
    ( λ X 
      Σ ( type-𝔽 X  Inhabited-𝔽 l2)
        ( λ Y  type-𝔽 A  (Σ (type-𝔽 X)  x  type-Inhabited-𝔽 (Y x)))))

module _
  {l l1 l2 : Level} (A : 𝔽 l) (D : Σ-Decomposition-𝔽 l1 l2 A)
  where

  finite-indexing-type-Σ-Decomposition-𝔽 : 𝔽 l1
  finite-indexing-type-Σ-Decomposition-𝔽 = pr1 D

  indexing-type-Σ-Decomposition-𝔽 : UU l1
  indexing-type-Σ-Decomposition-𝔽 =
    type-𝔽 finite-indexing-type-Σ-Decomposition-𝔽

  is-finite-indexing-type-Σ-Decomposition-𝔽 :
    is-finite (indexing-type-Σ-Decomposition-𝔽)
  is-finite-indexing-type-Σ-Decomposition-𝔽 =
    is-finite-type-𝔽 finite-indexing-type-Σ-Decomposition-𝔽

  finite-inhabited-cotype-Σ-Decomposition-𝔽 :
    Fam-Inhabited-Types-𝔽 l2 finite-indexing-type-Σ-Decomposition-𝔽
  finite-inhabited-cotype-Σ-Decomposition-𝔽 = pr1 (pr2 D)

  finite-cotype-Σ-Decomposition-𝔽 :
    type-𝔽 finite-indexing-type-Σ-Decomposition-𝔽  𝔽 l2
  finite-cotype-Σ-Decomposition-𝔽 =
    finite-type-Fam-Inhabited-Types-𝔽
      finite-indexing-type-Σ-Decomposition-𝔽
      finite-inhabited-cotype-Σ-Decomposition-𝔽

  cotype-Σ-Decomposition-𝔽 :
    type-𝔽 finite-indexing-type-Σ-Decomposition-𝔽  UU l2
  cotype-Σ-Decomposition-𝔽 x = type-𝔽 (finite-cotype-Σ-Decomposition-𝔽 x)

  is-finite-cotype-Σ-Decomposition-𝔽 :
    (x : type-𝔽 finite-indexing-type-Σ-Decomposition-𝔽) 
    is-finite (cotype-Σ-Decomposition-𝔽 x)
  is-finite-cotype-Σ-Decomposition-𝔽 x =
    is-finite-type-𝔽 (finite-cotype-Σ-Decomposition-𝔽 x)

  is-inhabited-cotype-Σ-Decomposition-𝔽 :
    (x : type-𝔽 finite-indexing-type-Σ-Decomposition-𝔽) 
    is-inhabited (cotype-Σ-Decomposition-𝔽 x)
  is-inhabited-cotype-Σ-Decomposition-𝔽 x =
    is-inhabited-type-Inhabited-𝔽
      ( finite-inhabited-cotype-Σ-Decomposition-𝔽 x)

  inhabited-cotype-Σ-Decomposition-𝔽 :
    Fam-Inhabited-Types l2 indexing-type-Σ-Decomposition-𝔽
  pr1 (inhabited-cotype-Σ-Decomposition-𝔽 x) =
    cotype-Σ-Decomposition-𝔽 x
  pr2 (inhabited-cotype-Σ-Decomposition-𝔽 x) =
    is-inhabited-cotype-Σ-Decomposition-𝔽 x

  matching-correspondence-Σ-Decomposition-𝔽 :
    type-𝔽 A  Σ indexing-type-Σ-Decomposition-𝔽 cotype-Σ-Decomposition-𝔽
  matching-correspondence-Σ-Decomposition-𝔽 = pr2 (pr2 D)

  map-matching-correspondence-Σ-Decomposition-𝔽 :
    type-𝔽 A  Σ indexing-type-Σ-Decomposition-𝔽 cotype-Σ-Decomposition-𝔽
  map-matching-correspondence-Σ-Decomposition-𝔽 =
    map-equiv matching-correspondence-Σ-Decomposition-𝔽

  Σ-Decomposition-Σ-Decomposition-𝔽 :
    Σ-Decomposition l1 l2 (type-𝔽 A)
  pr1 Σ-Decomposition-Σ-Decomposition-𝔽 =
    indexing-type-Σ-Decomposition-𝔽
  pr1 (pr2 Σ-Decomposition-Σ-Decomposition-𝔽) =
    inhabited-cotype-Σ-Decomposition-𝔽
  pr2 (pr2 Σ-Decomposition-Σ-Decomposition-𝔽) =
    matching-correspondence-Σ-Decomposition-𝔽

Fibered double finite Σ-decompositions

fibered-Σ-Decomposition-𝔽 :
  {l1 : Level} (l2 l3 l4 l5 : Level) (A : 𝔽 l1) 
  UU (l1  lsuc l2  lsuc l3  lsuc l4  lsuc l5)
fibered-Σ-Decomposition-𝔽 l2 l3 l4 l5 A =
  Σ ( Σ-Decomposition-𝔽 l2 l3 A)
    ( λ D 
      Σ-Decomposition-𝔽 l4 l5 (finite-indexing-type-Σ-Decomposition-𝔽 A D))

Displayed double Σ-decompositions

displayed-Σ-Decomposition-𝔽 :
  {l1 : Level} (l2 l3 l4 l5 : Level) (A : 𝔽 l1) 
  UU (l1  lsuc l2  lsuc l3  lsuc l4  lsuc l5)
displayed-Σ-Decomposition-𝔽 l2 l3 l4 l5 A =
  ( Σ ( Σ-Decomposition-𝔽 l2 l3 A)
      ( λ D  (u : indexing-type-Σ-Decomposition-𝔽 A D) 
        Σ-Decomposition-𝔽 l4 l5 (finite-cotype-Σ-Decomposition-𝔽 A D u)))

Properties

Finite Σ-Decomposition as a relaxed Σ-Decomposition with conditions

equiv-Relaxed-Σ-Decomposition-Σ-Decomposition-𝔽 :
  {l1 l2 l3 : Level} (A : 𝔽 l1) 
  Σ-Decomposition-𝔽 l2 l3 A 
  Σ ( Relaxed-Σ-Decomposition l2 l3 (type-𝔽 A))
    ( λ D 
      is-finite (indexing-type-Relaxed-Σ-Decomposition D) ×
      ((x : indexing-type-Relaxed-Σ-Decomposition D) 
        is-finite (cotype-Relaxed-Σ-Decomposition D x) ×
        is-inhabited (cotype-Relaxed-Σ-Decomposition D x)))
pr1 ( equiv-Relaxed-Σ-Decomposition-Σ-Decomposition-𝔽 A) D =
  ( indexing-type-Σ-Decomposition-𝔽 A D ,
    ( cotype-Σ-Decomposition-𝔽 A D) ,
    ( matching-correspondence-Σ-Decomposition-𝔽 A D)) ,
    ( is-finite-indexing-type-Σ-Decomposition-𝔽 A D) ,
    ( λ x  is-finite-cotype-Σ-Decomposition-𝔽 A D x ,
            is-inhabited-cotype-Σ-Decomposition-𝔽 A D x)
pr2 ( equiv-Relaxed-Σ-Decomposition-Σ-Decomposition-𝔽 A) =
  is-equiv-is-invertible
    ( λ X 
      ( pr1 (pr1 X) , pr1 (pr2 X)) ,
      ( ( λ x 
          ( pr1 (pr2 (pr1 X)) x , pr1 (pr2 (pr2 X) x)) ,
          ( pr2 (pr2 (pr2 X) x))) ,
        ( pr2 (pr2 (pr1 X)))))
    ( refl-htpy)
    ( refl-htpy)

Equivalence between finite surjection and finite Σ-decomposition

module _
  {l : Level} (A : 𝔽 l)
  where

  equiv-finite-surjection-Σ-Decomposition-𝔽 :
    Σ-Decomposition-𝔽 l l A  Σ (𝔽 l)  B  (type-𝔽 A)  (type-𝔽 B))
  equiv-finite-surjection-Σ-Decomposition-𝔽 =
    equiv-Σ
      ( λ B  type-𝔽 A  type-𝔽 B)
      ( id-equiv)
      ( λ X  inv-equiv (equiv-surjection-𝔽-family-finite-inhabited-type A X))

Equivalence between finite decidable equivalence relations and finite Σ-decompositions

  equiv-Decidable-equivalence-relation-𝔽-Σ-Decomposition-𝔽 :
    Σ-Decomposition-𝔽 l l A 
    Decidable-equivalence-relation-𝔽 l A
  equiv-Decidable-equivalence-relation-𝔽-Σ-Decomposition-𝔽 =
    inv-equiv (equiv-Surjection-𝔽-Decidable-equivalence-relation-𝔽 A) ∘e
    equiv-finite-surjection-Σ-Decomposition-𝔽

The type of all finite Σ-Decomposition is finite

  is-finite-Σ-Decomposition-𝔽 :
    is-finite (Σ-Decomposition-𝔽 l l A)
  is-finite-Σ-Decomposition-𝔽 =
    is-finite-equiv
      ( inv-equiv equiv-Decidable-equivalence-relation-𝔽-Σ-Decomposition-𝔽)
      ( is-finite-Decidable-equivalence-relation-𝔽 A)

Characterization of the equality of finite Σ-decompositions

module _
  {l1 l2 l3 : Level} (A : 𝔽 l1)
  where

  is-finite-Σ-Decomposition :
    subtype (l2  l3) (Σ-Decomposition l2 l3 (type-𝔽 A))
  is-finite-Σ-Decomposition D =
    Σ-Prop
      ( is-finite-Prop (indexing-type-Σ-Decomposition D))
      ( λ _ 
        Π-Prop
          ( indexing-type-Σ-Decomposition D)
          ( λ x  is-finite-Prop (cotype-Σ-Decomposition D x)))

  map-Σ-Decomposition-𝔽-subtype-is-finite :
    type-subtype is-finite-Σ-Decomposition  Σ-Decomposition-𝔽 l2 l3 A
  map-Σ-Decomposition-𝔽-subtype-is-finite ((X , (Y , e)) , (fin-X , fin-Y)) =
    ( ( X , fin-X) ,
        ( ( λ x 
            ( (type-Inhabited-Type (Y x)) , (fin-Y x)) ,
              (is-inhabited-type-Inhabited-Type (Y x))) ,
        e))

  map-inv-Σ-Decomposition-𝔽-subtype-is-finite :
    Σ-Decomposition-𝔽 l2 l3 A  type-subtype is-finite-Σ-Decomposition
  map-inv-Σ-Decomposition-𝔽-subtype-is-finite ((X , fin-X) , (Y , e)) =
    ( ( X ,
        ( ( λ x  inhabited-type-Inhabited-𝔽 (Y x)) ,
          ( e))) ,
      (fin-X ,  x  is-finite-Inhabited-𝔽 (Y x))))

  equiv-Σ-Decomposition-𝔽-is-finite-subtype :
    type-subtype is-finite-Σ-Decomposition  Σ-Decomposition-𝔽 l2 l3 A
  pr1 (equiv-Σ-Decomposition-𝔽-is-finite-subtype) =
    map-Σ-Decomposition-𝔽-subtype-is-finite
  pr2 (equiv-Σ-Decomposition-𝔽-is-finite-subtype) =
    is-equiv-is-invertible
      map-inv-Σ-Decomposition-𝔽-subtype-is-finite
      refl-htpy
      refl-htpy

  is-emb-Σ-Decomposition-Σ-Decomposition-𝔽 :
    is-emb (Σ-Decomposition-Σ-Decomposition-𝔽 {l1} {l2} {l3} A)
  is-emb-Σ-Decomposition-Σ-Decomposition-𝔽 =
    is-emb-triangle-is-equiv
      ( Σ-Decomposition-Σ-Decomposition-𝔽 A)
      ( pr1)
      ( map-inv-equiv ( equiv-Σ-Decomposition-𝔽-is-finite-subtype))
      ( refl-htpy)
      ( is-equiv-map-inv-equiv
        ( equiv-Σ-Decomposition-𝔽-is-finite-subtype))
      ( is-emb-inclusion-subtype (is-finite-Σ-Decomposition))

  emb-Σ-Decomposition-Σ-Decomposition-𝔽 :
    Σ-Decomposition-𝔽 l2 l3 A  Σ-Decomposition l2 l3 (type-𝔽 A)
  pr1 (emb-Σ-Decomposition-Σ-Decomposition-𝔽) =
    Σ-Decomposition-Σ-Decomposition-𝔽 A
  pr2 (emb-Σ-Decomposition-Σ-Decomposition-𝔽) =
    is-emb-Σ-Decomposition-Σ-Decomposition-𝔽

equiv-Σ-Decomposition-𝔽 :
  {l1 l2 l3 l4 l5 : Level} (A : 𝔽 l1)
  (X : Σ-Decomposition-𝔽 l2 l3 A) (Y : Σ-Decomposition-𝔽 l4 l5 A) 
  UU (l1  l2  l3  l4  l5)
equiv-Σ-Decomposition-𝔽 A X Y =
  equiv-Σ-Decomposition
    ( Σ-Decomposition-Σ-Decomposition-𝔽 A X)
    ( Σ-Decomposition-Σ-Decomposition-𝔽 A Y)

module _
  {l1 l2 l3 : Level} (A : 𝔽 l1)
  (X : Σ-Decomposition-𝔽 l2 l3 A) (Y : Σ-Decomposition-𝔽 l2 l3 A)
  where

  extensionality-Σ-Decomposition-𝔽 :
    (X  Y)  equiv-Σ-Decomposition-𝔽 A X Y
  extensionality-Σ-Decomposition-𝔽 =
    extensionality-Σ-Decomposition
      ( Σ-Decomposition-Σ-Decomposition-𝔽 A X)
      ( Σ-Decomposition-Σ-Decomposition-𝔽 A Y) ∘e
    equiv-ap-emb (emb-Σ-Decomposition-Σ-Decomposition-𝔽 A)

  eq-equiv-Σ-Decomposition-𝔽 :
    equiv-Σ-Decomposition-𝔽 A X Y  (X  Y)
  eq-equiv-Σ-Decomposition-𝔽 =
    map-inv-equiv (extensionality-Σ-Decomposition-𝔽)

Iterated finite Σ-Decomposition

Fibered finite Σ-Decomposition as a subtype

module _
  {l1 l2 l3 l4 l5 : Level} (A : 𝔽 l1)
  where

  is-finite-fibered-Σ-Decomposition :
    subtype (l2  l3  l4  l5)
      ( fibered-Σ-Decomposition l2 l3 l4 l5 (type-𝔽 A))
  is-finite-fibered-Σ-Decomposition D =
    Σ-Prop
      ( is-finite-Σ-Decomposition A ( fst-fibered-Σ-Decomposition D))
      ( λ p 
        is-finite-Σ-Decomposition
          ( indexing-type-fst-fibered-Σ-Decomposition D ,
            (pr1 p))
          ( snd-fibered-Σ-Decomposition D))

  equiv-fibered-Σ-Decomposition-𝔽-is-finite-subtype :
    type-subtype is-finite-fibered-Σ-Decomposition 
    fibered-Σ-Decomposition-𝔽 l2 l3 l4 l5 A
  equiv-fibered-Σ-Decomposition-𝔽-is-finite-subtype =
    equiv-Σ
      ( λ D 
        Σ-Decomposition-𝔽 l4 l5 ( finite-indexing-type-Σ-Decomposition-𝔽 A D))
      ( equiv-Σ-Decomposition-𝔽-is-finite-subtype A)
      ( λ x 
        equiv-Σ-Decomposition-𝔽-is-finite-subtype
        ( indexing-type-Σ-Decomposition
          ( inclusion-subtype (is-finite-Σ-Decomposition A) x) ,
            pr1
              ( is-in-subtype-inclusion-subtype
                ( is-finite-Σ-Decomposition A)
                (x)))) ∘e
      interchange-Σ-Σ
        ( λ D D' p 
          type-Prop
            ( is-finite-Σ-Decomposition
              ( indexing-type-Σ-Decomposition D ,
                pr1 p)
              ( D')))

Displayed finite Σ-Decomposition as a subtype

  is-finite-displayed-Σ-Decomposition :
    subtype (l2  l3  l4  l5)
      ( displayed-Σ-Decomposition l2 l3 l4 l5 (type-𝔽 A))
  is-finite-displayed-Σ-Decomposition D =
    Σ-Prop
      ( is-finite-Σ-Decomposition A (fst-displayed-Σ-Decomposition D))
      ( λ p 
        Π-Prop
          ( indexing-type-fst-displayed-Σ-Decomposition D)
          ( λ x 
            is-finite-Σ-Decomposition
              ( cotype-fst-displayed-Σ-Decomposition D x ,
                pr2 p x)
              ( snd-displayed-Σ-Decomposition D x)))

  equiv-displayed-Σ-Decomposition-𝔽-is-finite-subtype :
    type-subtype is-finite-displayed-Σ-Decomposition 
    displayed-Σ-Decomposition-𝔽 l2 l3 l4 l5 A
  equiv-displayed-Σ-Decomposition-𝔽-is-finite-subtype =
    equiv-Σ
      ( λ D 
        ( x : indexing-type-Σ-Decomposition-𝔽 A D) 
        ( Σ-Decomposition-𝔽 l4 l5 ( finite-cotype-Σ-Decomposition-𝔽 A D x)))
      ( equiv-Σ-Decomposition-𝔽-is-finite-subtype A)
      ( λ D1 
        equiv-Π
          ( _)
          ( id-equiv)
          ( λ x 
            equiv-Σ-Decomposition-𝔽-is-finite-subtype
            ( ( cotype-Σ-Decomposition
                ( inclusion-subtype (is-finite-Σ-Decomposition A) D1)
                ( x)) ,
              pr2
                ( is-in-subtype-inclusion-subtype
                  ( is-finite-Σ-Decomposition A) D1) x)) ∘e
          inv-distributive-Π-Σ) ∘e
      interchange-Σ-Σ _

Fibered finite Σ-decompositions and displayed finite Σ-Decomposition are equivalent

module _
  {l1 l : Level} (A : 𝔽 l1)
  (D : fibered-Σ-Decomposition l l l l (type-𝔽 A))
  where

  map-is-finite-displayed-fibered-Σ-Decomposition :
    type-Prop (is-finite-fibered-Σ-Decomposition A D) 
    type-Prop (is-finite-displayed-Σ-Decomposition A
      (map-equiv equiv-displayed-fibered-Σ-Decomposition D))
  pr1 (pr1 (map-is-finite-displayed-fibered-Σ-Decomposition p)) =
    pr1 (pr2 p)
  pr2 (pr1 (map-is-finite-displayed-fibered-Σ-Decomposition p)) =
    λ u  is-finite-Σ (pr2 (pr2 p) u)  v  (pr2 (pr1 p)) _)
  pr1 (pr2 (map-is-finite-displayed-fibered-Σ-Decomposition p) u) =
    pr2 (pr2 p) u
  pr2 (pr2 (map-is-finite-displayed-fibered-Σ-Decomposition p) u) =
    λ v  (pr2 (pr1 p)) _

  map-inv-is-finite-displayed-fibered-Σ-Decomposition :
    type-Prop (is-finite-displayed-Σ-Decomposition A
      (map-equiv equiv-displayed-fibered-Σ-Decomposition D)) 
    type-Prop (is-finite-fibered-Σ-Decomposition A D)
  pr1 (pr1 (map-inv-is-finite-displayed-fibered-Σ-Decomposition p)) =
    is-finite-equiv
      ( inv-equiv (matching-correspondence-snd-fibered-Σ-Decomposition D))
      ( is-finite-Σ (pr1 (pr1 p)) λ u  (pr1 (pr2 p u)))
  pr2 (pr1 (map-inv-is-finite-displayed-fibered-Σ-Decomposition p)) =
    map-inv-equiv
      ( equiv-precomp-Π
        ( inv-equiv ( matching-correspondence-snd-fibered-Σ-Decomposition D))
        ( λ z  is-finite (cotype-fst-fibered-Σ-Decomposition D z)))
      λ uv  pr2 (pr2 p (pr1 uv)) (pr2 uv)
  pr1 (pr2 (map-inv-is-finite-displayed-fibered-Σ-Decomposition p)) =
    pr1 (pr1 p)
  pr2 (pr2 (map-inv-is-finite-displayed-fibered-Σ-Decomposition p)) =
    λ u  pr1 (pr2 p u)

  equiv-is-finite-displayed-fibered-Σ-Decomposition :
    type-Prop (is-finite-fibered-Σ-Decomposition A D) 
    type-Prop (is-finite-displayed-Σ-Decomposition A
      (map-equiv equiv-displayed-fibered-Σ-Decomposition D))
  equiv-is-finite-displayed-fibered-Σ-Decomposition =
    equiv-iff-is-prop
      ( is-prop-type-Prop (is-finite-fibered-Σ-Decomposition A D))
      ( is-prop-type-Prop
        ( is-finite-displayed-Σ-Decomposition A
          ( map-equiv equiv-displayed-fibered-Σ-Decomposition D)))
      ( map-is-finite-displayed-fibered-Σ-Decomposition)
      ( map-inv-is-finite-displayed-fibered-Σ-Decomposition)

equiv-displayed-fibered-Σ-Decomposition-𝔽 :
  {l1 l : Level} (A : 𝔽 l1) 
  fibered-Σ-Decomposition-𝔽 l l l l A  displayed-Σ-Decomposition-𝔽 l l l l A
equiv-displayed-fibered-Σ-Decomposition-𝔽 A =
  equiv-displayed-Σ-Decomposition-𝔽-is-finite-subtype A ∘e
    ( equiv-Σ
        ( λ x  type-Prop (is-finite-displayed-Σ-Decomposition A x))
        ( equiv-displayed-fibered-Σ-Decomposition)
        ( equiv-is-finite-displayed-fibered-Σ-Decomposition A) ∘e
      inv-equiv ( equiv-fibered-Σ-Decomposition-𝔽-is-finite-subtype A))

Recent changes