Rational Cauchy approximations
Content created by malarbol.
Created on 2025-05-27.
Last modified on 2025-05-27.
module metric-spaces.rational-cauchy-approximations where
Imports
open import elementary-number-theory.absolute-value-rational-numbers open import elementary-number-theory.distance-rational-numbers open import elementary-number-theory.inequality-rational-numbers open import elementary-number-theory.positive-rational-numbers open import elementary-number-theory.rational-numbers open import foundation.dependent-pair-types open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import metric-spaces.cauchy-approximations-metric-spaces open import metric-spaces.complete-metric-spaces open import metric-spaces.convergent-cauchy-approximations-metric-spaces open import metric-spaces.limits-of-cauchy-approximations-premetric-spaces open import metric-spaces.metric-space-of-rational-numbers open import metric-spaces.metric-spaces open import metric-spaces.short-functions-metric-spaces open import real-numbers.cauchy-completeness-dedekind-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.metric-space-of-real-numbers open import real-numbers.rational-real-numbers
Idea
Rational Cauchy approximations¶ are Cauchy approximations in the metric space of rational numbers.
Definitions
The type of rational Cauchy approximations
cauchy-approximation-ℚ : UU lzero cauchy-approximation-ℚ = cauchy-approximation-Metric-Space metric-space-leq-ℚ map-cauchy-approximation-ℚ : cauchy-approximation-ℚ → ℚ⁺ → ℚ map-cauchy-approximation-ℚ = map-cauchy-approximation-Metric-Space metric-space-leq-ℚ is-cauchy-map-cauchy-approximation-ℚ : (f : cauchy-approximation-ℚ) → is-cauchy-approximation-Metric-Space ( metric-space-leq-ℚ) ( map-cauchy-approximation-ℚ f) is-cauchy-map-cauchy-approximation-ℚ = is-cauchy-approximation-map-cauchy-approximation-Metric-Space metric-space-leq-ℚ
Properties
The distance between two values f ε
and f δ
of a rational Cauchy approximation is bounded by ε + δ
bound-dist-map-cauchy-approximation-ℚ : (f : cauchy-approximation-ℚ) → (ε δ : ℚ⁺) → leq-ℚ ( rational-dist-ℚ ( map-cauchy-approximation-ℚ f ε) ( map-cauchy-approximation-ℚ f δ)) ( rational-ℚ⁺ (ε +ℚ⁺ δ)) bound-dist-map-cauchy-approximation-ℚ f ε δ = leq-dist-neighborhood-leq-ℚ ( ε +ℚ⁺ δ) ( map-cauchy-approximation-ℚ f ε) ( map-cauchy-approximation-ℚ f δ) ( is-cauchy-map-cauchy-approximation-ℚ f ε δ)
Any rational Cauchy approximation has a limit in the reals
real-limit-cauchy-approximation-ℚ : cauchy-approximation-ℚ → ℝ lzero real-limit-cauchy-approximation-ℚ f = limit-cauchy-approximation-Complete-Metric-Space ( complete-metric-space-leq-ℝ lzero) ( map-short-function-cauchy-approximation-Metric-Space ( metric-space-leq-ℚ) ( metric-space-leq-ℝ lzero) ( short-isometry-Metric-Space ( metric-space-leq-ℚ) ( metric-space-leq-ℝ lzero) ( isometry-metric-space-leq-real-ℚ)) ( f))
Recent changes
- 2025-05-27. malarbol. Zero approximations (#1424).