Rational Cauchy approximations

Content created by malarbol.

Created on 2025-05-27.
Last modified on 2025-05-27.

module metric-spaces.rational-cauchy-approximations where
Imports
open import elementary-number-theory.absolute-value-rational-numbers
open import elementary-number-theory.distance-rational-numbers
open import elementary-number-theory.inequality-rational-numbers
open import elementary-number-theory.positive-rational-numbers
open import elementary-number-theory.rational-numbers

open import foundation.dependent-pair-types
open import foundation.propositions
open import foundation.subtypes
open import foundation.universe-levels

open import metric-spaces.cauchy-approximations-metric-spaces
open import metric-spaces.complete-metric-spaces
open import metric-spaces.convergent-cauchy-approximations-metric-spaces
open import metric-spaces.limits-of-cauchy-approximations-premetric-spaces
open import metric-spaces.metric-space-of-rational-numbers
open import metric-spaces.metric-spaces
open import metric-spaces.short-functions-metric-spaces

open import real-numbers.cauchy-completeness-dedekind-real-numbers
open import real-numbers.dedekind-real-numbers
open import real-numbers.metric-space-of-real-numbers
open import real-numbers.rational-real-numbers

Idea

Rational Cauchy approximations are Cauchy approximations in the metric space of rational numbers.

Definitions

The type of rational Cauchy approximations

cauchy-approximation-ℚ : UU lzero
cauchy-approximation-ℚ =
  cauchy-approximation-Metric-Space metric-space-leq-ℚ

map-cauchy-approximation-ℚ : cauchy-approximation-ℚ  ℚ⁺  
map-cauchy-approximation-ℚ =
  map-cauchy-approximation-Metric-Space
    metric-space-leq-ℚ

is-cauchy-map-cauchy-approximation-ℚ :
  (f : cauchy-approximation-ℚ) 
  is-cauchy-approximation-Metric-Space
    ( metric-space-leq-ℚ)
    ( map-cauchy-approximation-ℚ f)
is-cauchy-map-cauchy-approximation-ℚ =
  is-cauchy-approximation-map-cauchy-approximation-Metric-Space
    metric-space-leq-ℚ

Properties

The distance between two values f ε and f δ of a rational Cauchy approximation is bounded by ε + δ

bound-dist-map-cauchy-approximation-ℚ :
  (f : cauchy-approximation-ℚ) 
  (ε δ : ℚ⁺) 
  leq-ℚ
    ( rational-dist-ℚ
      ( map-cauchy-approximation-ℚ f ε)
      ( map-cauchy-approximation-ℚ f δ))
    ( rational-ℚ⁺ (ε +ℚ⁺ δ))
bound-dist-map-cauchy-approximation-ℚ f ε δ =
  leq-dist-neighborhood-leq-ℚ
    ( ε +ℚ⁺ δ)
    ( map-cauchy-approximation-ℚ f ε)
    ( map-cauchy-approximation-ℚ f δ)
    ( is-cauchy-map-cauchy-approximation-ℚ f ε δ)

Any rational Cauchy approximation has a limit in the reals

real-limit-cauchy-approximation-ℚ : cauchy-approximation-ℚ   lzero
real-limit-cauchy-approximation-ℚ f =
  limit-cauchy-approximation-Complete-Metric-Space
    ( complete-metric-space-leq-ℝ lzero)
    ( map-short-function-cauchy-approximation-Metric-Space
      ( metric-space-leq-ℚ)
      ( metric-space-leq-ℝ lzero)
      ( short-isometry-Metric-Space
        ( metric-space-leq-ℚ)
        ( metric-space-leq-ℝ lzero)
        ( isometry-metric-space-leq-real-ℚ))
      ( f))

Recent changes